104 research outputs found
Topotecan-vincristine-doxorubicin in stage 4 high risk neuroblastoma patients failing to achieve a complete metastatic response to rapid COJEC : a SIOPEN study
Purpose : Metastatic response to induction therapy for high-risk neuroblastoma is a prognostic factor. In the International Society of Paediatric Oncology Europe Neuroblastoma (SIOPEN) HR-NBL-1 protocol, only patients with metastatic complete response (CR) or partial response (PR) with <= three abnormal skeletal areas on iodine 123-metaiodobenzylguanidine ([I-123] mIBG) scintigraphy and no bone marrow disease proceed to high dose therapy (HDT). In this study, topotecan-vincristine-doxorubicin (TVD) was evaluated in patients failing to achieve these criteria, with the aim of improving the metastatic response rate.
Materials and Methods : Patients with metastatic high-risk neuroblastoma who had not achieved the SIOPEN criteria for HDT after induction received two courses of topotecan 1.5 mg/m(2)/day for 5 days, followed by a 48-hour infusion of vincristine, 2 mg/m(2), and doxorubicin, 45 mg/m(2).
Results : Sixty-three patients were eligible and evaluable. Following two courses of TVD, four (6.4%) patients had an overall CR, while 28 (44.4%) had a PR with a combined response rate of 50.8% (95% confidence interval [CI], 37.9 to 63.6). Of these, 23 patients achieved a metastatic CR or a PR with <= 3 mIBG skeletal areas and no bone marrow disease (36.5%; 95% CI, 24.7 to 49.6) and were eligible to receive HDT. Toxicity was mostly haematological, affecting 106 of the 126 courses (84.1%; 95% CI, 76.5 to 90.0), and dose reduction was necessary in six patients. Stomatitis was the second most common nonhematological toxicity, occurring in 20 patients (31.7%).
Conclusion : TVD was effective in improving the response rate of high-risk neuroblastoma patients after induction with COJEC enabling them to proceed to HDT. However, the long-term benefits of TVD needs to be determined in randomized clinical trials
Ethyl-cellulose rumen-protected methionine alleviates inflammation and oxidative stress and improves neutrophil function during the periparturient period and early lactation in Holstein dairy cows.
The periparturient period is the most critical phase in the productive cycle of dairy cows and is characterized by impairment of the immune system. Our objective was to evaluate the effect of feeding ethyl-cellulose rumen-protected methionine (RPM) starting at d -28 from expected parturition through 60 d in milk on biomarkers of inflammation, oxidative stress, and liver function as well as leukocyte function. Sixty multiparous Holstein cows were used in a block design and assigned to either a control or the control plus ethyl-cellulose RPM (Mepron, Evonik Nutrition & Care GmbH). Mepron was supplied from -28 to 60 d in milk at a rate of 0.09% and 0.10% dry matter during the prepartum and postpartum period. That rate ensured that the ratio of Lys to Met in the metabolizable protein was close to 2.8:1. Blood samples from 15 clinically healthy cows per treatment were collected at d -30, -14, 1, 7, 21, 30, and 60 and analyzed for biomarkers of liver function, inflammation, and oxidative stress. Neutrophil and monocyte function in whole blood was measured in vitro at -14, 1, 7, 21, and 30 d in milk. The statistical model included the random effect of block and fixed effect of treatment, time, and its interaction. Compared with control, ethyl-cellulose RPM increased plasma cholesterol and paraoxonase after parturition. Among the inflammation biomarkers measured, ethyl-cellulose RPM led to greater albumin (negative acute-phase protein) and lower haptoglobin than control cows. Although concentration of IL-1β was not affected by treatments, greater IL-6 concentration was detected in response to ethyl-cellulose RPM. Cows supplemented with ethyl-cellulose RPM had greater plasma concentration of ferric-reducing antioxidant power, β-carotene, tocopherol, and total and reduced glutathione, whereas reactive oxygen metabolites were lower compared with control cows. Compared with control, ethyl-cellulose RPM enhanced neutrophil phagocytosis and oxidative burst. Overall, the results indicate that ethyl-cellulose RPM supply to obtain a Lys-to-Met ratio of 2.8:1 in the metabolizable protein during the periparturient period and early lactation is an effective approach to help mitigate oxidative stress and inflammation as well as enhance liver and neutrophil function in dairy cows
Ethyl-cellulose rumen-protected methionine enhances performance during the periparturient period and early lactation in Holstein dairy cows
The onset of lactation in dairy cows is characterized by severe negative energy and protein balance. Increasing Met availability during this time may improve milk production, hepatic lipid metabolism, and immune function. The aim of this study was to evaluate the effect of feeding ethyl-cellulose rumen-protected methionine (RPM; Mepron, Evonik Nutrition and Care GmbH, Hanau-Wolfgang, Germany) on the performance of dairy cows during prepartum and early-lactation periods. Sixty multiparous Holstein cows were used in a block design and assigned to either a control or an ethyl-cellulose RPM diet. Ethyl-cellulose RPM was supplied from -28 to 60 d relative to parturition at a rate of 0.09% and 0.10% of dry matter during the prepartum and postpartum periods, respectively. That rate ensured that the ratio of Lys to Met in metabolizable protein was close to 2.8:1. Cows fed ethyl-cellulose RPM had dry matter intakes (DMI) that were 1.2 kg/d greater during the prepartum period and consequently had overall greater cumulative DMI than cows in the control group. Compared with controls, during the fresh period (1-30 d in milk; DIM) feeding ethyl-cellulose RPM increased DMI by 1.7 kg/d, milk yield by 4.1 kg/d, fat yield by 0.17 kg/d, milk protein yield by 0.20 kg/d, 3.5% fat-corrected milk by 4.3 kg/d, and energy-corrected milk by 4.4 kg/d. Although ethyl-cellulose RPM supplementation increased milk protein content by 0.16 percentage units compared with the control during the fresh period, no differences were observed for milk fat, lactose, and milk urea nitrogen concentration. During the high-producing period (31-60 DIM), cows fed ethyl-cellulose RPM increased DMI and milk yield by 1.45 and 4.4 kg/d, respectively. Ethyl-cellulose RPM also increased fat yield by 0.19 kg/d, milk protein yield by 0.17 kg/d, 3.5% fat-corrected milk by 4.7 kg/d, and energy-corrected milk by 4.8 kg/d compared with controls. Ethyl-cellulose RPM supplementation reduced plasma fatty acids in the fresh period and decreased γ-glutamyl transferase, indicating better liver function. In conclusion, when lysine was adequate, feeding ethyl-cellulose RPM to achieve a ratio close to 2.8:1 in metabolizable protein improved dairy cow performance from parturition through 60 DIM. The greater milk production was, at least in part, driven by the greater voluntary DMI and better liver function
Hepatic phosphorylation status of serine/threonine kinase 1, mammalian target of rapamycin signaling proteins, and growth rate in Holstein heifer calves in response to maternal supply of methionine.
The study investigated whether methionine supply during late pregnancy is associated with liver mammalian target of rapamycin (MTOR) pathway phosphorylation, plasma biomarkers, and growth in heifer calves born to cows fed a control diet (CON) or the control diet plus ethylcellulose rumen-protected methionine (MET; 0.09% of dry matter intake) for the last 28 d prepartum. Calves were fed and managed similarly during the first 56 d of age. Plasma was harvested at birth and 2, 7, 21, 42, and 50 d of age and was used for biomarker profiling. Liver biopsies were harvested at 4, 14, 28, and 50 d of age and used for protein expression. Body weight, hip height, hip width, wither height, body length, rectal temperature, fecal score, and respiratory score were measured weekly. Starter intake was measured daily, and average daily gain was calculated during the first 8 wk of age. During the first 7 wk of age, compared with calves in the CON group, calves in the MET group had greater body weight, hip height, wither height, and average daily gain despite similar daily starter intake. Concentration of methionine in plasma was lower at birth but increased markedly at 2 and 7 d of age in MET calves. Plasma insulin, glucose, free fatty acids, and hydroxybutyrate did not differ. A greater ratio of phosphorylated α-serine/threonine kinase (AKT):total AKT protein expression was detected in MET calves, namely due to differences at 4 d of age. The phosphorylated MTOR:total MTOR ratio also was greater in MET calves due to differences at 28 and 50 d (8 d postweaning). The decrease in phosphorylated MTOR:total MTOR between 14 and 28 d in CON calves agreed with the increase in phosphorylated eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1):total EIF4EBP1 ratio during the same time frame. The overall expression of phosphorylated ribosomal protein S6 kinase B1 (RPS6KB1):total RPS6KB1 and phosphorylated eukaryotic translation elongation factor 2 (EEF2):total EEF2 was lower in MET calves. Regardless of methionine supply prepartum, there was an 11-fold temporal decrease from 4 to 50 d in phosphorylated AKT:total AKT. Similarly, regardless of methionine supply, there were overall decreases in phosphorylation ratios of AKT, MTOR, RPS6KB1, and eukaryotic translation initiation factor 2A (EIF2A) over time. Data provide evidence of a positive effect of methionine supply during the last month of pregnancy on rates of growth during the first 7 wk of age. Phosphorylation status of some components of the MTOR pathway in neonatal calf liver also was associated with greater maternal supply of methionine. Thus, the data suggest that molecular mechanisms in the liver might be programmed by supply of methionine during late pregnancy. The exact mechanisms coordinating the observed responses remain to be determined
Rumen-protected methionine compared with rumen-protected choline improves immunometabolic status in dairy cows during the peripartal period.
The immunometabolic status of peripartal cows is altered due to changes in liver function, inflammation, and oxidative stress. Nutritional management during this physiological state can affect the biological components of immunometabolism. The objectives of this study were to measure concentrations of biomarkers in plasma, liver tissue, and milk, and also polymorphonuclear leukocyte function to assess the immunometabolic status of cows supplemented with rumen-protected methionine (Met) or choline (CHOL). Forty-eight multiparous Holstein cows were used in a randomized complete block design with 2×2 factorial arrangement of Met (Smartamine M, Adisseo NA, Alpharetta, GA) and CHOL (ReaShure, Balchem Inc., New Hampton, NY) level (with or without). Treatments (12 cows each) were control (CON), no Met or CHOL; CON and Met (SMA); CON and CHOL (REA); and CON and Met and CHOL (MIX). From -50 to -21d before expected calving, all cows received the same diet [1.40Mcal of net energy for lactation (NEL)/kg of DM] with no Met or CHOL. From -21d to calving, cows received the same close-up diet (1.52Mcal of NEL/kg of DM) and were assigned randomly to each treatment. From calving to 30d, cows were on the same postpartal diet (1.71Mcal of NEL/kg of DM) and continued to receive the same treatments until 30d. The Met supplementation was adjusted daily at 0.08% DM of diet, and CHOL was supplemented at 60g/cow per day. Liver (-10, 7, 21, and 30d) and blood (-10, 4, 8, 20, and 30d) samples were harvested for biomarker analyses. Neutrophil and monocyte phagocytosis and oxidative burst were assessed at d 1, 4, 14, and 28d. The Met-supplemented cows tended to have greater plasma paraoxonase. Greater plasma albumin and IL-6 as well as a tendency for lower haptoglobin were detected in Met- but not CHOL-supplemented cows. Similarly, cows fed Met compared with CHOL had greater concentrations of total and reduced glutathione (a potent intracellular antioxidant) in liver tissue. Upon a pathogen challenge in vitro, blood polymorphonuclear leukocyte phagocytosis capacity and oxidative burst activity were greater in Met-supplemented cows. Overall, liver and blood biomarker analyses revealed favorable changes in liver function, inflammation status, and immune response in Met-supplemented cows
Grain challenge affects systemic and hepatic molecular biomarkers of inflammation, stress, and metabolic responses to a greater extent in Holstein than Jersey cows
Long-term feeding of high-grain diets to dairy cows often results in systemic inflammation characterized by alterations in acute-phase proteins and other biomarkers, both in plasma and immune-responsive tissues like the liver. The molecular and systemic changes that characterize an acute grain feeding challenge remain unclear. The current study involved 6 Holstein and 6 Jersey cows in a replicated 2 × 2 Latin square. Periods (10 d) were divided into 4 stages (S): S1, d 1 to 3, served as baseline with total mixed ration (TMR) ad libitum; S2, d 4, served as restricted feeding, with cows offered 50% of the average daily intake observed in S1; S3, d 5, a grain challenge was performed, in which cows were fed a TMR ad libitum without (CON) or with an additional pellet wheat-barley (1:1; HIG) at 20% of dry matter intake top-dressed onto the TMR; S4, d 6 to 10, served as recovery during which cows were allowed ad libitum access to the TMR. Among the 28 biomarkers analyzed in blood 12 h after grain challenge on d 5, the concentrations of fatty acids and bilirubin increased in HIG Holstein but not Jersey cows. In Holsteins, feeding HIG also increased total protein and albumin while decreasing ceruloplasmin, myeloperoxidase, and alkaline phosphatase concentrations. At the molecular level, hepatic genes associated with inflammation (IL1B, IL6, TNF, TLR4, MYD88, and NFKB1) were upregulated in Holstein cows fed HIG versus CON. Despite such response, expression of the acute-phase proteins SAA and HP in Holsteins fed HIG compared with CON was markedly downregulated. In Holsteins fed HIG versus CON, the marked downregulation of SCD, ELOVL6, and MTTP along with upregulated CPT1A, ACOX1, and APOA5 indicated alterations in fatty acid and lipoprotein metabolism during grain challenge. Genes related to ketogenesis (HMGCS2 and ACAT1) were upregulated in Jerseys, and gluconeogenic genes (PDK4 and PCK1) were upregulated in Holstein cows fed HIG, suggesting alterations in ketone body and glucose production. Expression of phosphorylated p70S6K1, RPS6, and 4EBP1 proteins, as well as total mechanistic target of rapamycin (mTOR) protein, decreased in Holsteins fed HIG, whereas phosphorylated mTOR and 4EBP1 proteins increased in Jerseys fed HIG. From a metabolic and inflammatory biomarker standpoint, data indicate that Jersey cows better tolerated the acute grain challenge. Alterations in mTOR signaling proteins in both Jerseys and Holsteins fed HIG suggest a potential role for exogenous AA in the hepatic adaptations to grain challenge. It remains to be determined if these acute responses to a grain challenge can elicit long-term liver dysfunction, which could negatively affect welfare of the cow
Acute mammary and liver transcriptome responses after an intramammary Escherichia coli lipopolysaccharide challenge in postpartal dairy cows
The study investigated the effect of an intramammary lipopolysaccharide (LPS) challenge on the bovine mammary and liver transcriptome and its consequences on metabolic biomarkers and liver tissue composition. At 7 days of lactation, 7 cows served as controls (CTR) and 7 cows (LPS) received an intramammary Escherichia coli LPS challenge. The mammary and liver tissues for transcriptomic profiling were biopsied at 2.5 h from challenge. Liver composition was evaluated at 2.5 h and 7 days after challenge, and blood biomarkers were analyzed at 2, 3, 7 and 14 days from challenge. In mammary tissue, the LPS challenge resulted in 189 differentially expressed genes (DEG), with 20 down-regulated and 169 up-regulated. In liver tissue, there were 107 DEG in LPS compared with CTR with 42 down-regulated and 65 up-regulated. In mammary, bioinformatics analysis highlighted that LPS led to activation of NOD-like receptor signaling, Toll-like receptor signaling, RIG-I-like receptor signaling and apoptosis pathways. In liver, LPS resulted in an overall inhibition of fatty acid elongation in mitochondria and activation of the p53 signaling pathway. The LPS challenge induced changes in liver lipid composition, a systemic inflammation (rise of blood ceruloplasmin and bilirubin), and an increase in body fat mobilization. The data suggest that cells within the inflamed mammary gland respond by activating mechanisms of pathogen recognition. However, in the liver the response likely depends on mediators originating from the udder that affect liver functionality and specifically fatty acid metabolism (b-oxidation, ketogenesis, and lipoprotein synthesis).Fil: Minuti, Andrea. Universita Cattolica del Sacro Cuore; ItaliaFil: Zhou, Zheng. University Of Illinois At Urbana; Estados UnidosFil: Graugnard, Daniel E. University Of Illinois At Urbana; Estados UnidosFil: Rodriguez Zas, Sandra L.. University Of Illinois At Urbana; Estados UnidosFil: Palladino, Rafael Alejandro. Universidad de Buenos Aires. Facultad de Agronomia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cardoso, Felipe C.. University Of Illinois At Urbana; Estados UnidosFil: Trevisi, Erminio. Universita Cattolica del Sacro Cuore; ItaliaFil: Loor, Juan J. University Of Illinois At Urbana; Estados Unido
Changes in fatty acids in plasma and association with the inflammatory response in dairy cows abomasally infused with essential fatty acids and conjugated linoleic acid during late and early lactation.
Dairy cows are exposed to increased inflammatory processes in the transition period from late pregnancy to early lactation. Essential fatty acids (EFA) and conjugated linoleic acid (CLA) are thought to modulate the inflammatory response in dairy cows. The present study investigated the effects of a combined EFA and CLA infusion on the fatty acid (FA) status in plasma lipids, and whether changes in the FA pattern were associated with the acute phase and inflammatory response during late pregnancy and early lactation. Rumen-cannulated Holstein cows (n = 40) were assigned from wk 9 antepartum to wk 9 postpartum to 1 of 4 treatment groups. Cows were abomasally supplemented with coconut oil (CTRL, 76 g/d), linseed and safflower oil (EFA, 78 g/d of linseed oil and 4 g/d of safflower oil; ratio of oils = 19.5:1; n-6:n-3 FA ratio = 1:3), Lutalin (CLA, 38 g/d; isomers cis-9,trans-11 and trans-10,cis-12; each 10 g/d), or both (EFA+CLA). Blood samples were taken to measure changes in FA in blood plasma on d -63, -42, 1, 28, and 56, and in plasma lipid fractions (cholesterol esters, free fatty acids, phospholipids, and triglycerides) on d -42, 1, and 56 relative to calving, and in erythrocyte membrane (EM) on d 56 after calving. Traits related to the acute phase response and inflammation were measured in blood throughout the study. Liver samples were obtained for biopsy on d -63, -21, 1, 28, and 63 relative to calving to measure the mRNA abundance of genes related to the inflammatory response. The concentrations of α-linolenic acid and n-3 FA metabolites increased in lipid fractions (especially phospholipids) and EM due to EFA supplementation with higher α-linolenic acid but lower n-3 metabolite concentrations in EFA+CLA than in EFA treatment only. Concentration of linoleic acid decreased in plasma fat toward calving and increased during early lactation in all groups. Concentration of plasma arachidonic acid was lower in EFA- than in non-EFA-treated groups in lipid fractions and EM. The cis-9,trans-11 CLA increased in all lipid fractions and EM after both CLA treatments. Plasma haptoglobin was lowered by EFA treatment before calving. Plasma bilirubin was lower in EFA and CLA than in CTRL at calving. Plasma concentration of IL-1β was higher in EFA than in CTRL and EFA+CLA at certain time points before and after calving. Plasma fibrinogen dropped faster in CLA than in EFA and EFA+CLA on d 14 postpartum. Plasma paraoxonase tended to be elevated by EFA treatment, and was higher in EFA+CLA than in CTRL on d 49. Hepatic mRNA abundance revealed time changes but no treatment effects with respect to the inflammatory response. Our data confirmed the enrichment of n-3 FA in EM by EFA treatment and the inhibition of n-3 FA desaturation by CLA treatment. The elevated n-3 FA status and reduced n-6:n-3 ratio by EFA treatment indicated a more distinct effect on the inflammatory response during the transition period than the single CLA treatment, and the combined EFA+CLA treatment caused minor additional changes on the anti-inflammatory response
Short communication: Supply of methionine during late pregnancy enhances whole-blood innate immune response of Holstein calves partly through changes in mRNA abundance in polymorphonuclear leukocytes
The supply of methionine (Met) in late pregnancy can alter mRNA abundance of genes associated with metabolism and immune response in liver and polymorphonuclear leukocytes (PMN) of the neonatal calf. Whether prenatal supply of Met elicits postnatal effects on systemic inflammation and innate immune response of the calf is not well known. We investigated whether enhancing the maternal supply of Met via feeding ethyl-cellulose rumen-protected Met (RPM) was associated with differences in calf innate immune response mRNA abundance in PMN and systemic indicators of inflammation during the first 50 d of life. Calves (n = 14 per maternal diet) born to cows fed RPM at 0.09% of diet dry matter per day (MET) for the last 28 ± 2 d before calving or fed a control diet with no added Met (CON) were used. Blood for biomarker analysis and isolation of PMN for innate immune function assays and mRNA abundance was harvested at birth (before colostrum feeding) and at 7, 21 and 50 d of age. Whole blood was challenged with enteropathogenic bacteria (Escherichia coli 0118:H8) and phagocytosis and oxidative burst of neutrophils and monocytes were quantified via flow cytometry. Although concentration of haptoglobin and activity of myeloperoxidase among calves from both maternal groups increased markedly between 0 and 7 d of age followed by a decrease to baseline at d 21 the responses were lower in MET compared with CON calves. Nitric oxide concentration decreased markedly between 0 and 7 d regardless of maternal group but MET calves tended to have lower overall concentrations during the study. In vitro phagocytosis in stimulated neutrophils increased markedly over time in both CON and MET calves but responses were overall greater in MET calves. Oxidative burst in both neutrophils and monocytes increased over time regardless of maternal treatment. The mRNA abundance of lactate dehydrogenase (LDHA) signal transducer and activator of transcription 3 (STAT3) and S100 calcium binding protein A8 (S100A8) in PMN was overall greater in MET calves. Overall data suggest that increasing the maternal supply of Met during late pregnancy could affect the neonatal calf inflammatory status and innate immune response. Although changes in mRNA abundance could play a role in coordinating the immune response the exact mechanisms merit further study
- …