17,615 research outputs found
Are people really conformist-biased? An empirical test and a new mathematical model
According to an influential theory in cultural evolution, within-group similarity of culture is explained by a human 'conformist-bias', which is a hypothesized evolved predisposition to preferentially follow a member of the majority when acquiring ideas and behaviours. However, this notion has little support from social psychological research. In fact, a major theory in social psychology (LATANÉ and WOLF, 1981) argues for what is in effect a ‘nonconformist-bias’: by analogy to standard psychophysics they predict minority sources of influence to have relatively greater impact than majority sources. Here we present a new mathematical model and an experiment on social influence, both specifically designed to test these competing predictions. The results are in line with nonconformism. Finally, we discuss within-group similarity and suggest that it is not a general phenomenon but must be studied trait by trait
The Hamburg/ESO R-process Enhanced Star survey (HERES) X. HE 2252-4225, one more r-process enhanced and actinide-boost halo star
We report on a detailed abundance analysis of the r-process enhanced giant
star, HE 2252-4225 ([Fe/H] = -2.63, [r/Fe] = 0.80). Determination of stellar
parameters and element abundances was based on analysis of high-quality
VLT/UVES spectra. The surface gravity was calculated from the NLTE ionisation
balance between Fe I and Fe II. Accurate abundances were determined for a total
of 38 elements, including 22 neutron-capture elements beyond Sr and up to Th.
This object is deficient in carbon, as expected for a giant star with Teff <
4800 K. The stellar Na-Zn abundances are well fitted by the yields of a single
supernova of 14.4 Msun. For the neutron-capture elements in the Sr-Ru, Ba-Yb,
and Os-Ir regions, the abundance pattern of HE 2252-4225 is in excellent
agreement with the average abundance pattern of the strongly r-process enhanced
stars CS 22892-052, CS 31082-001, HE 1219-0312, and HE 1523-091. This suggests
a common origin of the first, second, and third r-process peak elements in HE
2252-4225 in the classical r-process. We tested the solar r-process pattern
based on the most recent s-process calculations of Bisterzo et al. (2014) and
found that elements in the range from Ba to Ir match it very well. No firm
conclusion can be drawn about the relationship between the fisrt
neutron-capture peak elements, Sr to Ru, in HE 2252-4225 and the solar
r-process, due to the uncertainty in the solar r-process. The investigated star
has an anomalously high Th/Eu abundance ratio, so that radioactive age dating
results in a stellar age of tau = 1.5+-1.5 Gyr that is not expected for a very
metal-poor halo star.Comment: 20 pages, 6 tables, 9 figures, accepted for publication in A&
Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations
We consider an initial-boundary value problem for
, that is, for a fractional
diffusion () or wave () equation. A numerical solution
is found by applying a piecewise-linear, discontinuous Galerkin method in time
combined with a piecewise-linear, conforming finite element method in space.
The time mesh is graded appropriately near , but the spatial mesh is
quasiuniform. Previously, we proved that the error, measured in the spatial
-norm, is of order , uniformly in , where
is the maximum time step, is the maximum diameter of the spatial finite
elements, and . Here,
we generalize a known result for the classical heat equation (i.e., the case
) by showing that at each time level the solution is
superconvergent with respect to : the error is of order
. Moreover, a simple postprocessing step
employing Lagrange interpolation yields a superconvergent approximation for any
. Numerical experiments indicate that our theoretical error bound is
pessimistic if . Ignoring logarithmic factors, we observe that the
error in the DG solution at , and after postprocessing at all , is of
order .Comment: 24 pages, 2 figure
The Calibration of Stromgren uvby-Hbeta Photometry for Late-Type Stars -- a Model Atmosphere Approach
We aim to test the power of theoretical calibrations based on a new
generation of MARCS models by comparisons with observational photomteric data.
We calculate synthetic uvby-Hbeta colour indices from synthetic spectra. A
sample of 388 field stars as well as stars in globular clusters is used for a
direct comparison of the synthetic indices versus empirical data and for
scrutinizing the possibilities of theoretical calibrations for temperature,
metallicity and gravity. We show that the temperature sensitivity of the
synthetic (b-y) colour is very close to its empirical counterpart, whereas the
temperature scale based upon Hbeta shows a slight offset. The theoretical
metallicity sensitivity of the m1 index (and for G-type stars its combination
with c1) is somewhat larger than the empirical one, based upon spectroscopic
determinations. The gravity sensitivity of the synthetic c1 index shows a
satisfactory behaviour when compared to obervations of F stars. For stars
cooler than the sun a deviation is significant in the c1-(b-y) diagram. The
theoretical calibrations of (b-y), (v-y) and c1 seem to work well for Pop II
stars and lead to effective temperatures for globular cluster stars supporting
recent claims by Korn et al. (2007) that atomic diffusion occurs in stars near
the turnoff point of NGC 6397. Synthetic colours of stellar atmospheres can
indeed be used, in many cases, to derive reliable fundamental stellar
parameters. The deviations seen when compared to observational data could be
due to incomplete linelists but are possibly also due to effects of assuming
plane-parallell or spherical geometry and LTE
Pulsation-induced atmospheric dynamics in M-type AGB stars. Effects on wind properties, photometric variations and near-IR CO line profiles
Wind-driving in asymptotic giant branch (AGB) stars is commonly attributed to
a two-step process. First, matter in the stellar atmosphere is levitated by
shock waves, induced by stellar pulsation, and second, this matter is
accelerated by radiation pressure on dust, resulting in a wind. In dynamical
atmosphere and wind models the effects of the stellar pulsation are often
simulated by a simplistic prescription at the inner boundary. We test a sample
of dynamical models for M-type AGB stars, for which we kept the stellar
parameters fixed to values characteristic of a typical Mira variable but varied
the inner boundary condition. The aim was to evaluate the effect on the
resulting atmosphere structure and wind properties. The results of the models
are compared to observed mass-loss rates and wind velocities, photometry, and
radial velocity curves, and to results from 1D radial pulsation models.
Dynamical atmosphere models are calculated, using the DARWIN code for different
combinations of photospheric velocities and luminosity variations. The inner
boundary is changed by introducing an offset between maximum expansion of the
stellar surface and the luminosity and/or by using an asymmetric shape for the
luminosity variation. Models that resulted in realistic wind velocities and
mass-loss rates, when compared to observations, also produced realistic
photometric variations. For the models to also reproduce the characteristic
radial velocity curve present in Mira stars (derived from CO
lines), an overall phase shift of 0.2 between the maxima of the luminosity and
radial variation had to be introduced. We find that a group of models with
different boundary conditions (29 models, including the model with standard
boundary conditions) results in realistic velocities and mass-loss rates, and
in photometric variations
Dust-driven winds of AGB stars: The critical interplay of atmospheric shocks and luminosity variations
Winds of AGB stars are thought to be driven by a combination of
pulsation-induced shock waves and radiation pressure on dust. In dynamic
atmosphere and wind models, the stellar pulsation is often simulated by
prescribing a simple sinusoidal variation in velocity and luminosity at the
inner boundary of the model atmosphere. We experiment with different forms of
the luminosity variation in order to assess the effects on the wind velocity
and mass-loss rate, when progressing from the simple sinusoidal recipe towards
more realistic descriptions. Using state-of-the-art dynamical models of C-rich
AGB stars, a range of different asymmetric shapes of the luminosity variation
and a range of phase shifts of the luminosity variation relative to the radial
variation are tested. These tests are performed on two stellar atmosphere
models. The first model has dust condensation and, as a consequence, a stellar
wind is triggered, while the second model lacks both dust and wind. The first
model with dust and stellar wind is very sensitive to moderate changes in the
luminosity variation. There is a complex relationship between the luminosity
minimum, and dust condensation: changing the phase corresponding to minimum
luminosity can either increase or decrease mass-loss rate and wind velocity.
The luminosity maximum dominates the radiative pressure on the dust, which in
turn, is important for driving the wind. These effects of changed luminosity
variation are coupled with the dust formation. In contrast there is very little
change to the structure of the model without dust. Changing the luminosity
variation, both by introducing a phase shift and by modifying the shape,
influences wind velocity and the mass-loss rate. To improve wind models it
would probably be desirable to extract boundary conditions from 3D dynamical
interior models or stellar pulsation models.Comment: 11 pages, 13 figures, accepted for publication in A&
Exploring wind-driving dust species in cool luminous giants III. Wind models for M-type AGB stars: dynamic and photometric properties
Stellar winds observed in asymptotic giant branch (AGB) stars are usually
attributed to a combination of stellar pulsations and radiation pressure on
dust. Shock waves triggered by pulsations propagate through the atmosphere,
compressing the gas and lifting it to cooler regions, which create favourable
conditions for grain growth. If sufficient radiative acceleration is exerted on
the newly formed grains through absorption or scattering of stellar photons, an
outflow can be triggered. Strong candidates for wind-driving dust species in
M-type AGB stars are magnesium silicates (MgSiO and MgSiO). Such
grains can form close to the stellar surface, they consist of abundant
materials and, if they grow to sizes comparable to the wavelength of the
stellar flux maximum, they experience strong acceleration by photon scattering.
We use a frequency-dependent radiation-hydrodynamics code with a detailed
description for the growth of MgSiO grains to calculate the first
extensive set of time-dependent wind models for M-type AGB stars. The resulting
wind properties, visual and near-IR photometry and mid-IR spectra are compared
with observations.We show that the models can produce outflows for a wide range
of stellar parameters. We also demonstrate that they reproduce observed
mass-loss rates and wind velocities, as well as visual and near-IR photometry.
However, the current models do not show the characteristic silicate features at
10 and 18 m as a result of the cool temperature of MgSiO grains in
the wind. Including a small amount of Fe in the grains further out in the
circumstellar envelope will increase the grain temperature and result in
pronounced silicate features, without significantly affecting the photometry in
the visual and near-IR wavelength regions.Comment: 11 pages, 14 figure
Multiadaptive Galerkin Methods for ODEs III: A Priori Error Estimates
The multiadaptive continuous/discontinuous Galerkin methods mcG(q) and mdG(q)
for the numerical solution of initial value problems for ordinary differential
equations are based on piecewise polynomial approximation of degree q on
partitions in time with time steps which may vary for different components of
the computed solution. In this paper, we prove general order a priori error
estimates for the mcG(q) and mdG(q) methods. To prove the error estimates, we
represent the error in terms of a discrete dual solution and the residual of an
interpolant of the exact solution. The estimates then follow from interpolation
estimates, together with stability estimates for the discrete dual solution
- …