58 research outputs found

    The Effect of Bacterial Infection on the Biomechanical Properties of Biological Mesh in a Rat Model

    Get PDF
    BACKGROUND: The use of biologic mesh to repair abdominal wall defects in contaminated surgical fields is becoming the standard of practice. However, failure rates and infections of these materials persist clinically. The purpose of this study was to determine the mechanical properties of biologic mesh in response to a bacterial encounter. METHODS: A rat model of Staphylococcus aureus colonization and infection of subcutaneously implanted biologic mesh was used. Samples of biologic meshes (acellular human dermis (ADM) and porcine small intestine submucosa (SIS)) were inoculated with various concentrations of methicillin-resistant Staphylococcus aureus [10(5), 10(9) colony-forming units] or saline (control) prior to wound closure (n = 6 per group). After 10 or 20 days, meshes were explanted, and cultured for bacteria. Histological changes and bacterial recovery together with biomechanical properties were assessed. Data were compared using a 1-way ANOVA or a Mann-Whitney test, with p<0.05. RESULTS: The overall rate of staphylococcal mesh colonization was 81% and was comparable in the ADM and SIS groups. Initially (day 0) both biologic meshes had similar biomechanical properties. However after implantation, the SIS control material was significantly weaker than ADM at 20 days (p = 0.03), but their corresponding modulus of elasticity were similar at this time point (p>0.05). After inoculation with MRSA, a time, dose and material dependent decrease in the ultimate tensile strength and modulus of elasticity of SIS and ADM were noted compared to control values. CONCLUSION: The biomechanical properties of biologic mesh significantly decline after colonization with MRSA. Surgeons selecting a repair material should be aware of its biomechanical fate relative to other biologic materials when placed in a contaminated environment

    Somatosensory modulation of perceptual vestibular detection

    Get PDF
    Vestibular-multisensory interactions are essential for self-motion, navigation and postural stability. Despite evidence suggesting shared brain areas between vestibular and somatosensory inputs, no study has yet investigated whether somatosensory information influences vestibular perception. Here, we used signal detection methods to identify whether somatosensory stimulation might interact with vestibular events in a vestibular detection task. Participants were instructed to detect near-threshold vestibular roll-rotation sensations delivered by galvanic vestibular stimulation in one-half of experimental trials. A vibrotactile signal occurred to the index fingers of both hands in half of the trials, independent of vestibular signals. We found that vibrotactile somatosensory stimulation decreased perceptual vestibular sensitivity. The results are compatible with a gain regulation mechanism between vestibular and somatosensory modalities

    The origins of the trypanosome genome strains Trypanosoma brucei brucei TREU 927, T. b. gambiense DAL 972, T. vivax Y486 and T. congolense IL3000

    Get PDF
    The genomes of several tsetse-transmitted African trypanosomes (Trypanosoma brucei brucei, T. b. gambiense, T. vivax, T. congolense) have been sequenced and are available to search online. The trypanosome strains chosen for the genome sequencing projects were selected because they had been well characterised in the laboratory, but all were isolated several decades ago. The purpose of this short review is to provide some background information on the origins and biological characterisation of these strains as a source of reference for future users of the genome data. With high throughput sequencing of many more trypanosome genomes in prospect, it is important to understand the phylogenetic relationships of the genome strains

    Treatment of invasive fungal infections in cancer patients—Recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO)

    Full text link

    The Ulm Sparrows 2001

    No full text
    The Ulm Sparrows team is an student-oriented, interdisciplinary research effort at the University of Ulm. The team is active in both the simulation and the middle-siz
    • …
    corecore