18 research outputs found

    Measurement of the branching fraction for the decay B→K∗(892)ℓ+ℓ−B \to K^{\ast}(892)\ell^+\ell^- at Belle II

    Full text link
    We report a measurement of the branching fraction of B→K∗(892)ℓ+ℓ−B \to K^{\ast}(892)\ell^+\ell^- decays, where ℓ+ℓ−=ÎŒ+Ό−\ell^+\ell^- = \mu^+\mu^- or e+e−e^+e^-, using electron-positron collisions recorded at an energy at or near the ΄(4S)\Upsilon(4S) mass and corresponding to an integrated luminosity of 189189 fb−1^{-1}. The data was collected during 2019--2021 by the Belle II experiment at the SuperKEKB e+e−e^{+}e^{-} asymmetric-energy collider. We reconstruct K∗(892)K^{\ast}(892) candidates in the K+π−K^+\pi^-, KS0π+K_{S}^{0}\pi^+, and K+π0K^+\pi^0 final states. The signal yields with statistical uncertainties are 22±622\pm 6, 18±618 \pm 6, and 38±938 \pm 9 for the decays B→K∗(892)ÎŒ+Ό−B \to K^{\ast}(892)\mu^+\mu^-, B→K∗(892)e+e−B \to K^{\ast}(892)e^+e^-, and B→K∗(892)ℓ+ℓ−B \to K^{\ast}(892)\ell^+\ell^-, respectively. We measure the branching fractions of these decays for the entire range of the dilepton mass, excluding the very low mass region to suppress the B→K∗(892)Îł(→e+e−)B \to K^{\ast}(892)\gamma(\to e^+e^-) background and regions compatible with decays of charmonium resonances, to be \begin{equation} {\cal B}(B \to K^{\ast}(892)\mu^+\mu^-) = (1.19 \pm 0.31 ^{+0.08}_{-0.07}) \times 10^{-6}, {\cal B}(B \to K^{\ast}(892)e^+e^-) = (1.42 \pm 0.48 \pm 0.09)\times 10^{-6}, {\cal B}(B \to K^{\ast}(892)\ell^+\ell^-) = (1.25 \pm 0.30 ^{+0.08}_{-0.07}) \times 10^{-6}, \end{equation} where the first and second uncertainties are statistical and systematic, respectively. These results, limited by sample size, are the first measurements of B→K∗(892)ℓ+ℓ−B \to K^{\ast}(892)\ell^+\ell^- branching fractions from the Belle II experiment

    One University Blvd.

    No full text
    1 Introduction Ising spin glasses are prototypical models for disordered systems and have playeda central role in statistical physics during the last three decades [1-4]. Examples of experimental realizations of spin glasses are metals with magnetic impuri-ties, e.g. gold with a small fraction of iron added. Spin glasses represent also a large class of challenging problems for optimization algorithms [5-7] where thetask is to minimize energy of a given spin-glass instance [8-13]. States with the lowest energy are called ground states and thus the problem of minimizing th
    corecore