15 research outputs found

    Nongenomic oestrogen signalling in oestrogen receptor negative breast cancer cells: a role for the angiotensin II receptor AT1

    Get PDF
    INTRODUCTION: Oestrogens can mediate some of their cell survival properties through a nongenomic mechanism that involves the mitogen-activated protein kinase (MAPK) pathway. The mechanism of this rapid signalling and its dependence on a membrane bound oestrogen receptor (ER), however, remains controversial. The role of G-protein-coupled receptor and epidermal growth factor (EGF) receptor in an ER-independent signalling pathway modulated by oestrogen was investigated. METHODS: ER-positive and ER-negative breast cancer cell lines (MCF-7 and SKBR3) and primary breast cancer cell cultures were used in this study. Cell proliferation was assessed using standard MTT assays. Protein and cAMP levels were detected by Western blotting and ELISA, respectively. Antigen localization was performed by immunocytochemistry, immunohistochemistry and immunofluorescence. Protein knockdown was achieved using small interfering RNA technologies. RESULTS: EGF and oestrogen, alone and in combination, induced cell proliferation and phosphorylation of MAPK proteins Raf and ERK (extracellular signal regulated kinase)1/2 in both ER-negative SKBR3 and ER-positive MCF-7 human breast cancer cell lines. Increased Raf phosphorylation was also observed in primary human breast cultures derived from ER-positive and ER-negative breast tumours. Oestrogen induced an increase in intracellular cAMP in ER-negative SKBR3 human breast cancer cells. Oestrogen-mediated cell growth and phosphorylation of MAPK was modified by the EGF receptor antagonist AG1478, the G-protein antagonist pertussis toxin, and the angiotensin II receptor antagonist saralasin. Knockdown of angiotensin II type 1 receptor (AT1) protein expression with small interfering RNA attenuated oestrogen-induced Raf phosphorylation in ER-negative cells. AT1 receptor was found to be expressed in the cell membrane of breast tumour epithelial cells. CONCLUSION: These findings provide evidence that, in breast cancer cells, oestrogen can signal through AT1 to activate early cell survival mechanisms in an ER-independent manner

    Localisation of renin-angiotensin system (RAS) components in breast

    Get PDF
    Angiotensin II has mitogenic and angiogenic effects and its receptors are widespread, particularly in epithelial tissue. Tissue renin angiotensin systems (tRASs) may be a local source of angiotensin II that has specific paracrine functions. To investigate the presence of a tRAS in normal human breast and tumours. Immunocytochemistry, and quantitative RT–PCR was used to establish: (i) the presence and localisation of RAS components, (ii) the possibility of their involvement in cancer. (1) mRNA coding for angiotensinogen, prorenin, angiotensin converting enzyme (ACE), and both AT1 and AT2 receptors was demonstrated in normal and diseased breast tissues. (2) (pro)renin was identified in epithelial cells in both normal and diseased tissue, but in invasive carcinoma, its distribution was mostly confined to fibroblasts or could not be detected at all. (3) Angiotensin converting enzyme was shown in epithelial cells in both normal and malignant tissue. The results are consistent with the hypothesis that a tRAS is present in the breast, and is disrupted in invasive cancer

    Renin and angiotensinogen expression and functions in growth and apoptosis of human glioblastoma

    Get PDF
    The expression and function in growth and apoptosis of the renin-angiotensin system (RAS) was evaluated in human glioblastoma. Renin and angiotensinogen (AGT) mRNAs and proteins were found by in situ hybridisation and immunohistochemistry in glioblastoma cells. Angiotensinogen was present in glioblastoma cystic fluids. Thus, human glioblastoma cells produce renin and AGT and secrete AGT. Human glioblastoma and glioblastoma cells expressed renin, AGT, renin receptor, AT(2) and/or AT(1) mRNAs and proteins determined by RT-PCR and/or Western blotting, respectively. The function of the RAS in glioblastoma was studied using human glioblastoma cells in culture. Angiotensinogen, des(Ang I)AGT, tetradecapaptide renin substrate (AGT1-14), Ang I, Ang II or Ang III, added to glioblastoma cells in culture, did not modulate their proliferation, survival or death. Angiotensin-converting enzyme inhibitors did not diminish glioblastoma cell proliferation. However, the addition of selective synthetic renin inhibitors to glioblastoma cells decreased DNA synthesis and viable tumour cell number, and induced apoptosis. This effect was not counterbalanced by concomitant addition of Ang II. In conclusion, the complete RAS is expressed by human glioblastomas and glioblastoma cells in culture. Inhibition of renin in glioblastoma cells may be a potential approach to control glioblastoma cell proliferation and survival, and glioblastoma progression in combination therapy

    Angiotensin II type 1 receptor expression in ovarian cancer and its correlation with tumour angiogenesis and patient survival

    Get PDF
    Angiotensin II, a main effector peptide in the renin–angiotensin system, acts as a growth-promoting and angiogenic factor via type 1 angiotensin II receptors (AT1R). We have recently demonstrated that angiotensin II enhanced tumour cell invasion and vascular endothelial growth factor (VEGF) secretion via AT1R in ovarian cancer cell lines in vitro. The aim of the present study was to determine whether AT1R expression in ovarian cancer is correlated with clinicopathological parameters, angiogenic factors and patient survival. Immunohistochemical staining for AT1R, VEGF, CD34 and proliferating cell nuclear antigen (PCNA) were analysed in ovarian cancer tissues (n=67). Intratumour microvessel density (MVD) was analysed by counting the CD34-positive endothelial cells. Type 1 angiotensin II receptors were expressed in 85% of the cases examined, of which 55% were strongly positive. Type 1 angiotensin II receptors expression was positively correlated with VEGF expression intensity and MVD, but not with histological subtype, grade, FIGO stage or PCNA labelling index. In patients who had positive staining for AT1R, the overall survival and progression-free survival were significantly poor (P=0.041 and 0.017, respectively) as compared to those in patients who had negative staining for AT1R, although VEGF, but not AT1R, was an independent prognostic factor on multivariate analysis. These results demonstrated that AT1R correlated with tumour angiogenesis and poor patient outcome in ovarian cancer, suggesting its clinical potential for a novel molecular target in strategies for ovarian cancer treatment

    Blockage of angiotensin II type I receptor decreases the synthesis of growth factors and induces apoptosis in C6 cultured cells and C6 rat glioma

    Get PDF
    Angiotensin II (Ang II) is a main effector peptide in the renin–angiotensin system and participates in the regulation of vascular tone. It also has a role in the expression of growth factors that induce neovascularisation which is closely associated to the growth of malignant gliomas. We have shown that the selective blockage of the AT1 receptor of angiotensin inhibites tumour growth, cell proliferation and angiogenesis of C6 rat glioma. The aim of this study was to study the effects of the blockage of AT1 receptor on the synthesis of growth factors, and in the genesis of apoptosis in cultured C6 glioma cells and in rats with C6 glioma. Administration of losartan at doses of 40 or 80 mg kg−1 to rats with C6 glioma significantly decreased tumoral volume and production of platelet-derived growth factor, vascular endothelial growth factor and basic fibroblast growth factor. It also induced apoptosis in a dose-dependent manner. Administration of Ang II increased cell proliferation of cultured C6 cells which decreased by the administration of losartan. Our results suggest that the selective blockage of AT1 diminishes tumoral growth through inhibition of growth factors and promotion of apoptosis

    The tissue renin-angiotensin system in human pancreas

    No full text

    Angiotensin II type 1 receptor expression in human breast tissues

    No full text
    We demonstrate the expression of angiotensin II type 1 (AT1) receptors in normal and diseased human breast tissues. Using monoclonal antibody 6313/G2, directed against a specific sequence in the extracellular domain of the AT1 receptor, immunocytochemical analysis revealed positive immunoreactivity in membrane and cytoplasm of specific cell types. Immunoblotting of solubilized proteins separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) from benign and malignant tumours identified a single immunoreactive species with a molecular mass of approximately 60 kDa, consistent with that of the mature glycosylated receptor. In studies of [125I]angiotensin II binding using breast membrane preparations, concentrations of specific angiotensin II binding sites were found to range from 1.8 to 100 fmol mg(-1) protein, with a K(d) of approximately 60 nM. Most of the specifically bound [125I]angiotensin II was displaced by losartan, a specific angiotensin II type 1 receptor antagonist, while less was displaced by the AT2 receptor type antagonist, CGP42112A, thus confirming the prevalence of AT1 receptors in this tissue type. These data suggest that the renin-angiotensin system may be involved in normal and abnormal breast tissue function
    corecore