1,459 research outputs found
Music notation: a new method for visualizing social interaction in animals and humans
BACKGROUND: Researchers have developed a variety of techniques for the visual presentation of quantitative data. These techniques can help to reveal trends and regularities that would be difficult to see if the data were left in raw form. Such techniques can be of great help in exploratory data analysis, making apparent the organization of data sets, developing new hypotheses, and in selecting effects to be tested by statistical analysis. Researchers studying social interaction in groups of animals and humans, however, have few tools to present their raw data visually, and it can be especially difficult to perceive patterns in these data. In this paper I introduce a new graphical method for the visual display of interaction records in human and animal groups, and I illustrate this method using data taken on chickens forming dominance hierarchies. RESULTS: This new method presents data in a way that can help researchers immediately to see patterns and connections in long, detailed records of interaction. I show a variety of ways in which this new technique can be used: (1) to explore trends in the formation of both group social structures and individual relationships; (2) to compare interaction records across groups of real animals and between real animals and computer-simulated animal interactions; (3) to search for and discover new types of small-scale interaction sequences; and (4) to examine how interaction patterns in larger groups might emerge from those in component subgroups. In addition, I discuss how this method can be modified and extended for visualizing a variety of different kinds of social interaction in both humans and animals. CONCLUSION: This method can help researchers develop new insights into the structure and organization of social interaction. Such insights can make it easier for researchers to explain behavioural processes, to select aspects of data for statistical analysis, to design further studies, and to formulate appropriate mathematical models and computer simulations
Combined approach of perioperative 18F-FDG PET/CT imaging and intraoperative 18F-FDG handheld gamma probe detection for tumor localization and verification of complete tumor resection in breast cancer
<p>Abstract</p> <p>Background</p> <p><sup>18</sup>F-fluorodeoxyglucose (<sup>18</sup>F-FDG) positron emission tomography/computed tomography (PET/CT) has become an established method for detecting hypermetabolic sites of known and occult disease and is widely used in oncology surgical planning. Intraoperatively, it is often difficult to localize tumors and verify complete resection of tumors that have been previously detected on diagnostic PET/CT at the time of the original evaluation of the cancer patient. Therefore, we propose an innovative approach for intraoperative tumor localization and verification of complete tumor resection utilizing <sup>18</sup>F-FDG for perioperative PET/CT imaging and intraoperative gamma probe detection.</p> <p>Methods</p> <p>Two breast cancer patients were evaluated. <sup>18</sup>F-FDG was administered and PET/CT was acquired immediately prior to surgery. Intraoperatively, tumors were localized and resected with the assistance of a handheld gamma probe. Resected tumors were scanned with specimen PET/CT prior to pathologic processing. Shortly after the surgical procedure, patients were re-imaged with PET/CT utilizing the same preoperatively administered <sup>18</sup>F-FDG dose.</p> <p>Results</p> <p>One patient had primary carcinoma of breast and a metastatic axillary lymph node. The second patient had a solitary metastatic liver lesion. In both cases, preoperative PET/CT verified these findings and demonstrated no additional suspicious hypermetabolic lesions. Furthermore, intraoperative gamma probe detection, specimen PET/CT, and postoperative PET/CT verified complete resection of the hypermetabolic lesions.</p> <p>Conclusion</p> <p>Immediate preoperative and postoperative PET/CT imaging, utilizing the same <sup>18</sup>F-FDG injection dose, is feasible and image quality is acceptable. Such perioperative PET/CT imaging, along with intraoperative gamma probe detection and specimen PET/CT, can be used to verify complete tumor resection. This innovative approach demonstrates promise for assisting the oncologic surgeon in localizing and verifying resection of <sup>18</sup>F-FDG positive tumors and may ultimately positively impact upon long-term patient outcomes.</p
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
Phenoloxidase activity acts as a mosquito innate immune response against infection with semliki forest virus
Several components of the mosquito immune system including the RNA interference (RNAi), JAK/STAT, Toll and IMD pathways have previously been implicated in controlling arbovirus infections. In contrast, the role of the phenoloxidase (PO) cascade in mosquito antiviral immunity is unknown. Here we show that conditioned medium from the Aedes albopictus-derived U4.4 cell line contains a functional PO cascade, which is activated by the bacterium Escherichia coli and the arbovirus Semliki Forest virus (SFV) (Togaviridae; Alphavirus). Production of recombinant SFV expressing the PO cascade inhibitor Egf1.0 blocked PO activity in U4.4 cell- conditioned medium, which resulted in enhanced spread of SFV. Infection of adult female Aedes aegypti by feeding mosquitoes a bloodmeal containing Egf1.0-expressing SFV increased virus replication and mosquito mortality. Collectively, these results suggest the PO cascade of mosquitoes plays an important role in immune defence against arboviruses
DAX-1 expression in human breast cancer: comparison with estrogen receptors ER-α, ER-β and androgen receptor status
BACKGROUND: So far there have been no reports on the expression pattern of DAX-1 (dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1) in human breast cells and its relationship to the estrogen receptors, ER-α and ER-β, and the androgen receptor (AR). METHODS: In this study we evaluated, by immunohistochemistry and Western blot analysis, the presence and distribution of DAX-1 in benign breast disease (BBD), in situ carcinoma (CIS), and ductal and lobular breast carcinomas. RESULTS: In BBD and breast carcinomas, DAX-1 was present in both the nuclei and the cytoplasm of epithelial cells, although in infiltrative carcinomas the percentage of nuclear immunoreaction was higher than in CIS. An important relation was observed between DAX-1 and AR expression and between this orphan receptor and nodal status. CONCLUSION: DAX-1 might modify the AR and ER-β intracellular location, and because a direct positive relation between the expression of these three receptors was found it could be assumed that the presence of DAX-1 in neoplastic cells might indicate a possible failure of endocrine therapies
CRISPR Interference Directs Strand Specific Spacer Acquisition
Background: CRISPR/Cas is a widespread adaptive immune system in prokaryotes. This system integrates short stretches of DNA derived from invading nucleic acids into genomic CRISPR loci, which function as memory of previously encountered invaders. In Escherichia coli, transcripts of these loci are cleaved into small RNAs and utilized by the Cascade complex to bind invader DNA, which is then likely degraded by Cas3 during CRISPR interference. Results: We describe how a CRISPR-activated E. coli K12 is cured from a high copy number plasmid under non-selective conditions in a CRISPR-mediated way. Cured clones integrated at least one up to five anti-plasmid spacers in genomic CRISPR loci. New spacers are integrated directly downstream of the leader sequence. The spacers are non-randomly selected to target protospacers with an AAG protospacer adjacent motif, which is located directly upstream of the protospacer. A cooccurrence of PAM deviations and CRISPR repeat mutations was observed, indicating that one nucleotide from the PAM is incorporated as the last nucleotide of the repeat during integration of a new spacer. When multiple spacers were integrated in a single clone, all spacer targeted the same strand of the plasmid, implying that CRISPR interference caused by the first integrated spacer directs subsequent spacer acquisition events in a strand specific manner. Conclusions: The E. coli Type I-E CRISPR/Cas system provides resistance against bacteriophage infection, but also enables removal of residing plasmids. We established that there is a positive feedback loop between active spacers in a cluster – i
Towards the clinical implementation of pharmacogenetics in bipolar disorder.
BackgroundBipolar disorder (BD) is a psychiatric illness defined by pathological alterations between the mood states of mania and depression, causing disability, imposing healthcare costs and elevating the risk of suicide. Although effective treatments for BD exist, variability in outcomes leads to a large number of treatment failures, typically followed by a trial and error process of medication switches that can take years. Pharmacogenetic testing (PGT), by tailoring drug choice to an individual, may personalize and expedite treatment so as to identify more rapidly medications well suited to individual BD patients.DiscussionA number of associations have been made in BD between medication response phenotypes and specific genetic markers. However, to date clinical adoption of PGT has been limited, often citing questions that must be answered before it can be widely utilized. These include: What are the requirements of supporting evidence? How large is a clinically relevant effect? What degree of specificity and sensitivity are required? Does a given marker influence decision making and have clinical utility? In many cases, the answers to these questions remain unknown, and ultimately, the question of whether PGT is valid and useful must be determined empirically. Towards this aim, we have reviewed the literature and selected drug-genotype associations with the strongest evidence for utility in BD.SummaryBased upon these findings, we propose a preliminary panel for use in PGT, and a method by which the results of a PGT panel can be integrated for clinical interpretation. Finally, we argue that based on the sufficiency of accumulated evidence, PGT implementation studies are now warranted. We propose and discuss the design for a randomized clinical trial to test the use of PGT in the treatment of BD
Going Coastal: Shared Evolutionary History between Coastal British Columbia and Southeast Alaska Wolves (Canis lupus)
Many coastal species occupying the temperate rainforests of the Pacific Northwest in North America comprise endemic populations genetically and ecologically distinct from interior continental conspecifics. Morphological variation previously identified among wolf populations resulted in recognition of multiple subspecies of wolves in the Pacific Northwest. Recently, separate genetic studies have identified diverged populations of wolves in coastal British Columbia and coastal Southeast Alaska, providing support for hypotheses of distinct coastal subspecies. These two regions are geographically and ecologically contiguous, however, there is no comprehensive analysis across all wolf populations in this coastal rainforest.By combining mitochondrial DNA datasets from throughout the Pacific Northwest, we examined the genetic relationship between coastal British Columbia and Southeast Alaska wolf populations and compared them with adjacent continental populations. Phylogenetic analysis indicates complete overlap in the genetic diversity of coastal British Columbia and Southeast Alaska wolves, but these populations are distinct from interior continental wolves. Analyses of molecular variation support the separation of all coastal wolves in a group divergent from continental populations, as predicted based on hypothesized subspecies designations. Two novel haplotypes also were uncovered in a newly assayed continental population of interior Alaska wolves.We found evidence that coastal wolves endemic to these temperate rainforests are diverged from neighbouring, interior continental wolves; a finding that necessitates new international strategies associated with the management of this species
- …