1,282 research outputs found

    Blind Ptychographic Phase Retrieval via Convergent Alternating Direction Method of Multipliers

    Get PDF
    Ptychography has risen as a reference X-ray imaging technique: it achieves resolutions of one billionth of a meter, macroscopic field of view, or the capability to retrieve chemical or magnetic contrast, among other features. A ptychographyic reconstruction is normally formulated as a blind phase retrieval problem, where both the image (sample) and the probe (illumination) have to be recovered from phaseless measured data. In this article we address a nonlinear least squares model for the blind ptychography problem with constraints on the image and the probe by maximum likelihood estimation of the Poisson noise model. We formulate a variant model that incorporates the information of phaseless measurements of the probe to eliminate possible artifacts. Next, we propose a generalized alternating direction method of multipliers designed for the proposed nonconvex models with convergence guarantee under mild conditions, where their subproblems can be solved by fast element-wise operations. Numerically, the proposed algorithm outperforms state-of-the-art algorithms in both speed and image quality.Comment: 23 page

    System calibration method for Fourier ptychographic microscopy

    Full text link
    Fourier ptychographic microscopy (FPM) is a recently proposed quantitative phase imaging technique with high resolution and wide field-of-view (FOV). In current FPM imaging platforms, systematic error sources come from the aberrations, LED intensity fluctuation, parameter imperfections and noise, which will severely corrupt the reconstruction results with artifacts. Although these problems have been researched and some special methods have been proposed respectively, there is no method to solve all of them. However, the systematic error is a mixture of various sources in the real situation. It is difficult to distinguish a kind of error source from another due to the similar artifacts. To this end, we report a system calibration procedure, termed SC-FPM, based on the simulated annealing (SA) algorithm, LED intensity correction and adaptive step-size strategy, which involves the evaluation of an error matric at each iteration step, followed by the re-estimation of accurate parameters. The great performance has been achieved both in simulation and experiments. The reported system calibration scheme improves the robustness of FPM and relaxes the experiment conditions, which makes the FPM more pragmatic.Comment: 18 pages, 9 figure

    Karyotyping human chromosomes by optical and X-ray ptychography methods

    Get PDF
    Sorting and identifying chromosomes, a process known as karyotyping, is widely used to detect changes in chromosome shapes and gene positions. In a karyotype the chromosomes are identified by their size and therefore this process can be performed by measuring macroscopic structural variables. Chromosomes contain a specific number of base pairs that linearly correlate with their size; therefore it is possible to perform a karyotype on chromosomes using their mass as an identifying factor. Here, we obtain the first images of chromosomes using the novel imaging method of ptychography. We can use the images to measure the mass of chromosomes and perform a partial karyotype from the results. We also obtain high spatial resolution using this technique with synchrotron source X-rays

    Advanced Denoising for X-ray Ptychography

    Get PDF
    The success of ptychographic imaging experiments strongly depends on achieving high signal-to-noise ratio. This is particularly important in nanoscale imaging experiments when diffraction signals are very weak and the experiments are accompanied by significant parasitic scattering (background), outliers or correlated noise sources. It is also critical when rare events such as cosmic rays, or bad frames caused by electronic glitches or shutter timing malfunction take place. In this paper, we propose a novel iterative algorithm with rigorous analysis that exploits the direct forward model for parasitic noise and sample smoothness to achieve a thorough characterization and removal of structured and random noise. We present a formal description of the proposed algorithm and prove its convergence under mild conditions. Numerical experiments from simulations and real data (both soft and hard X-ray beamlines) demonstrate that the proposed algorithms produce better results when compared to state-of-the-art methods.Comment: 24 pages, 9 figure

    Polarization resolved Cu L3L_3-edge resonant inelastic x-ray scattering of orbital and spin excitations in NdBa2_{2}Cu3_{3}O7δ_{7-\delta}

    Full text link
    High resolution resonant inelastic x-ray scattering (RIXS) has proven particularly effective in the determination of crystal field and spin excitations in cuprates. Its strength lies in the large Cu L3L_{3} resonance and in the fact that the scattering cross section follows quite closely the single-ion model predictions, both in the insulating parent compounds and in the superconducting doped materials. However, the spectra become increasingly broader with (hole) doping, hence resolving and assigning spectral features has proven challenging even with the highest energy resolution experimentally achievable. Here we have overcome this limitation by measuring the complete polarization dependence of the RIXS spectra as function of momentum transfer and doping in thin films of NdBa2_{2}Cu3_{3}O7δ_{7-\delta}. Besides confirming the previous assignment of dddd and spin excitations (magnon, bimagnon) in the antiferromagnetic insulating parent compound, we unequivocally single out the actual spin-flip contribution at all dopings. We also demonstrate that the softening of dddd excitations is mainly attributed to the shift of the xyxy peak to lower energy loss. These results provide a definitive assessment of the RIXS spectra of cuprates and demonstrate that RIXS measurements with full polarization control are practically feasible and highly informative.Comment: 14 pages, 10 figure

    The LEA's perspective of change : the case for directed development

    Get PDF
    Pages numbered 1-40Bibliography: p. 37-40Supported in part by the National Institute of Education under contract no. NIE-400-81-003
    corecore