62 research outputs found
Genetic Divergence between Freshwater and Marine Morphs of Alewife (Alosa pseudoharengus): A âNext-Generationâ Sequencing Analysis
Alewife Alosa pseudoharengus, a small clupeid fish native to Atlantic Ocean, has recently (âŒ150 years ago) invaded the North American Great Lakes and despite challenges of freshwater environment its populations exploded and disrupted local food web structures. This range expansion has been accompanied by dramatic changes at all levels of organization. Growth rates, size at maturation, or fecundity are only a few of the most distinct morphological and life history traits that contrast the two alewife morphs. A question arises to what extent these rapidly evolving differences between marine and freshwater varieties result from regulatory (including phenotypic plasticity) or structural mutations. To gain insights into expression changes and sequence divergence between marine and freshwater alewives, we sequenced transcriptomes of individuals from Lake Michigan and Atlantic Ocean. Population specific single nucleotide polymorphisms were rare but interestingly occurred in sequences of genes that also tended to show large differences in expression. Our results show that the striking phenotypic divergence between anadromous and lake alewives can be attributed to massive regulatory modifications rather than coding changes
Does Intraspecific Size Variation in a Predator Affect Its Diet Diversity and Top-Down Control of Prey?
It has long been known that intraspecific variation impacts evolutionary processes, but only recently have its potential ecological effects received much attention. Theoretical models predict that genetic or phenotypic variance within species can alter interspecific interactions, and experiments have shown that genotypic diversity in clonal species can impact a wide range of ecological processes. To extend these studies to quantitative trait variation within populations, we experimentally manipulated the variance in body size of threespine stickleback in enclosures in a natural lake environment. We found that body size of stickleback in the lake is correlated with prey size and (to a lesser extent) composition, and that stickleback can exert top-down control on their benthic prey in enclosures. However, a six-fold contrast in body size variance had no effect on the degree of diet variation among individuals, or on the abundance or composition of benthic or pelagic prey. Interestingly, post-hoc analyses revealed suggestive correlations between the degree of diet variation and the strength of top-down control by stickleback. Our negative results indicate that, unless the correlation between morphology and diet is very strong, ecological variation among individuals may be largely decoupled from morphological variance. Consequently we should be cautious in our interpretation both of theoretical models that assume perfect correlations between morphology and diet, and of empirical studies that use morphological variation as a proxy for resource use diversity
Integrating ecology and evolutionary theory. A game changer for biodiversity conservation?
Currently, one of the central arguments in favour of biodiversity conservation is that it is essential for the maintenance of ecosystem services, that is, the benefits that people receive from ecosystems. However, the relationship between ecosystem services and biodiversity is contested and needs clarification. The goal of this chapter is to spell out the interaction and reciprocal influences between conservation science, evolutionary biology, and ecology, in order to understand whether a stronger integration of evolutionary and ecological studies might help clarify the interaction between biodiversity and ecosystem functioning as well as influence biodiversity conservation practices. To this end, the eco-evolutionary feedback theory proposed by David Post and Eric Palkovacs is analysed, arguing that it helps operationalise niche construction theory and develop a more sophisticated understanding of the relationship between ecosystem functioning and biodiversity. Finally, it is proposed that by deepening the integration of ecological and evolutionary factors in our understanding of ecosystem functioning, the eco-evolutionary feedback theory is supportive of an âevolutionary-enlightened managementâ of biodiversity within the ecosystem services approach.info:eu-repo/semantics/publishedVersio
Low Genetic Variation in the Heath Hen Prior to Extinction and Implications for the Conservation of Prairie-Chicken Populations
Low genetic variation is often considered to contribute to the extinction of species when they reach small population sizes. In this study we examined the mitochondrial control region from museum specimens of the Heath Hen ( Tympanuchus cupido cupido ), which went extinct in 1932. Today, the closest living relatives of the Heath Hen, the Greater ( T. c. pinnatus ), Attwaterâs ( T. c. attwateri ) and Lesser ( T. pallidicinctus ) Prairie-chicken, are declining throughout most of their range in Midwestern North America, and loss of genetic variation is a likely contributor to their decline. Here we show that 30Â years prior to their extinction, Heath Hens had low levels of mitochondrial genetic variation when compared with contemporary populations of prairie-chickens. Furthermore, some current populations of Greater Prairie-chickens are isolated and losing genetic variation due to drift. We estimate that these populations will reach the low levels of genetic variation found in Heath Hens within the next 40Â years. Genetic variation and fitness can be restored with translocation of individuals from other populations; however, we also show that choosing an appropriate source population for translocation can be difficult without knowledge of historic population bottlenecks and their effect on genetic structure.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42596/1/10592_2005_Article_7856.pd
Bone histology provides insights into the life history mechanisms underlying dwarfing in hipparionins
Size shifts may be a by-product of alterations in life history traits driven by natural selection. Although this approach has been proposed for islands, it has not yet been explored in continental faunas. The trends towards size decrease experienced by some hipparionins constitute a good case study for the application of a life history framework to understand the size shifts on the continent. Here, we analysed bone microstructure to reconstruct the growth of some different-sized hipparionins from Greece and Spain. The two dwarfed lineages studied show different growth strategies. The Greek hipparions ceased growth early at a small size thus advancing maturity, whilst the slower-growing Spanish hipparion matured later at a small size. Based on predictive life history models, we suggest that high adult mortality was the likely selective force behind early maturity and associated size decrease in the Greek lineage. Conversely, we infer that resource limitation accompanied by high juvenile mortality triggered decrease in growth rate and a relative late maturity in the Spanish lineage. Our results provide evidence that different selective pressures can precipitate different changes in life history that lead to similar size shifts
Influences of Domestication and Island Evolution on Dental Growth in Sheep
Funder: Department of Zoology, University of CambridgeFunder: Leverhulme Trust; doi: http://dx.doi.org/10.13039/501100000275Abstract: Domestication and island evolution can lead to changes of life history along the slow-fast gradient. Shifts of life history patterns, in turn, are potentially related to alterations of patterns and timing of tooth eruption. Schultzâs rule predicts an earlier eruption of molars relative to premolars as fecundity increases during the domestication process. On the other hand, evolution on a predator-free, resource limited island might lead to a generally slow life history and delayed tooth eruption, as in the Plio-Pleistocene Balearic caprine Myotragus. In this study, we investigate tooth eruption and its relation to life history in a unique sheep population that is an example of both domestication and island evolution: the ancient and feral Soay sheep (Ovis aries) of the St. Kilda archipelago, Scotland. Tooth eruption timing and sequence is investigated in a comparative framework featuring new data on other domestic sheep (O. aries), including European mouflon (O. a. musimon), as well as wild sheep (O. vignei, O. cycloceros, O. arkal, O. orientalis, O. ammon). These data indicate that the order of eruption is similar in wild and domestic sheep, despite the fundamental life history changes that came about with domestication. However, in contrast to other domestic sheep breeds, Soay sheep erupt their teeth at an absolute older age and also tend to grow more slowly, which resembles the evolutionary trend in island-adapted Myotragus. Despite these similarities, Soay sheep do not share the slow life history pattern inferred for Myotragus, highlighting the distinctive nature of tooth eruption in Soay sheep
Experimental evidence that phenotypic divergence in predators drives community divergence in prey.
Studies of adaptive divergence have traditionally focused on the ecological causes of trait diversification, while the ecological consequences of phenotypic divergence remain relatively unexplored. Divergence in predator foraging traits, in particular, has the potential to impact the structure and dynamics of ecological communities. To examine the effects of predator trait divergence on prey communities, we exposed zooplankton communities in lake mesocosms to predation from either anadromous or landlocked (freshwater resident) alewives, which have undergone recent and rapid phenotypic differentiation in foraging traits (gape width, gill raker spacing, and prey size-selectivity). Anadromous alewives, which exploit large prey items, significantly reduced the mean body size, total biomass, species richness, and diversity of crustacean zooplankton relative to landlocked alewives, which exploit smaller prey. The zooplankton responses observed in this experiment are consistent with patterns observed in lakes. This study provides direct evidence that phenotypic divergence in predators, even in its early stages, can play a critical role in determining prey community structure
Eco-evolutionary trophic dynamics: loss of top predators drives trophic evolution and ecology of prey.
Ecosystems are being altered on a global scale by the extirpation of top predators. The ecological effects of predator removal have been investigated widely; however, predator removal can also change natural selection acting on prey, resulting in contemporary evolution. Here we tested the role of predator removal on the contemporary evolution of trophic traits in prey. We utilized a historical introduction experiment where Trinidadian guppies (Poecilia reticulata) were relocated from a site with predatory fishes to a site lacking predators. To assess the trophic consequences of predator release, we linked individual morphology (cranial, jaw, and body) to foraging performance. Our results show that predator release caused an increase in guppy density and a "sharpening" of guppy trophic traits, which enhanced food consumption rates. Predator release appears to have shifted natural selection away from predator escape ability and towards resource acquisition ability. Related diet and mesocosm studies suggest that this shift enhances the impact of guppies on lower trophic levels in a fashion nuanced by the omnivorous feeding ecology of the species. We conclude that extirpation of top predators may commonly select for enhanced feeding performance in prey, with important cascading consequences for communities and ecosystems
- âŠ