12 research outputs found

    Carotenoids from Phaffia rhodozyma: Antioxidant activity and stability of extracts

    Get PDF
    The main goal of this work was to establish the stability and antioxidant activity of the extracts obtained through different techniques for recovering carotenoids from Phaffia rhodozyma NRRL-Y 17268. The best conditions for extracting carotenoids through cell rupture with dimethylsulfoxide (DMSO) were found to be a particle size of 0.125 mm submitted to freezing temperature (-18°C) for 48 h (272 μg/g). For DMSO extracts, freezing negatively affected the antioxidant activity by 2,2 '-azinobis (3-ethyl benzothiazoline-6-sulfonic acid)) and DPPH (2,2-diphenyl-1-picrylhydrazyl (DPPH) methods. The carotenogenic extracts obtained by enzymatic disruption proved to be more promising in relation to its antioxidant activity.Key words: Microbial carotenoids, antioxidant properties, cell wall disruption

    Production of FAME and FAEE via Alcoholysis of Sunflower Oil by Eversa Lipases Immobilized on Hydrophobic Supports

    Full text link
    The performance of two new commercial low-cost lipases Eversa® Transform and Eversa® Transform 2.0 immobilized in different supports was investigated. The two lipases were adsorbed on four different hydrophobic supports. Interesting results were obtained for both lipases and for the four supports. However, the most active derivative was prepared by immobilization of Eversa® Transform 2.0 on Sepabeads C-18. Ninety-nine percent of fatty acid ethyl ester was obtained, in 3 h at 40 °C, by using hexane as solvent, a molar ratio of 4:1 (ethanol/oil), and 10 wt% of immobilized biocatalyst. The final reaction mixture contained traces of monoacylglycerols but was completely free of diacylglycerols. After four reaction cycles, the immobilized biocatalyst preserved 75% of activity. Both lipases immobilized in Sepabeads C-18 were very active with ethanol and methanol as acceptors, but they were much more stable in the presence of ethanol.This work was sponsored by the Spanish Ministry of Science and Innovation (projects AGL-2009-07526 and BIO2012-36861). The authors thank CNPq and CAPES for the scholarships and financial support of this work.Peer reviewe
    corecore