8 research outputs found

    Epidemiology of Invasive Fungal Infections in Latin America

    Get PDF
    The pathogenic role of invasive fungal infections (IFIs) has increased during the past two decades in Latin America and worldwide, and the number of patients at risk has risen dramatically. Working habits and leisure activities have also been a focus of attention by public health officials, as endemic mycoses have provoked a number of outbreaks. An extensive search of medical literature from Latin America suggests that the incidence of IFIs from both endemic and opportunistic fungi has increased. The increase in endemic mycoses is probably related to population changes (migration, tourism, and increased population growth), whereas the increase in opportunistic mycoses may be associated with the greater number of people at risk. In both cases, the early and appropriate use of diagnostic procedures has improved diagnosis and outcome

    A new energy conservation scheme for the numeric study of the heat transfer in profile extrusion calibration

    No full text
    In this work, a new second-order conservative finite volume scheme using the cell-to-vertex interpolation is proposed to solve the heat transfer problem involving discontinuous solution and discontinuous materials properties. We apply the method to a thermoplastic extrusion process where a dry calibration is used to cool down a polymer tape. One of the major difficulties in the modelling is to prescribe the adequate value for the heat transfer coefficient between the polymer and the calibrator. To this end, we define an optimization procedure coupled with the new finite volume method to evaluate the heat transfer coefficient at the polymer-calibrator interface from experimental data.This research was financed by FEDER Funds through Programa Operacional Factores de Competitividade - COMPETE and by Portuguese Funds through FCT - Fundacao para a Ciencia e a Tecnologia, within the Projects PEst-OE/MAT/UI0013/2014, PTDC/MAT/121185/2010, and UID/CTM/50025/2013. The second author was also financed by project FCT-ANR/MAT-NAN/0122/2012.info:eu-repo/semantics/publishedVersio

    Linear solvers for the finite pointset method

    No full text
    Many simulations in Computational Engineering suffer from slow convergence rates of their linear solvers. This is also true for the Finite Pointset Method (FPM), which is a Meshfree Method used in Computational Fluid Dynamics. FPM uses Generalized Finite Difference Methods (GFDM) in order to discretize the arising differential operators. Like other Meshfree Methods, it does not involve a fixed mesh; FPM uses a point cloud instead. We look at the properties of linear systems arising from GFDM on point clouds and their implications on different types of linear solvers, specifically focusing on the differences between one-level solvers and Multigrid Methods, including Algebraic Multigrid (AMG). With the knowledge about the properties of the systems, we develop a new Multigrid Method based on point cloud coarsening. Numerical experiments show that our Multicloud method has the same advantages as other Multigrid Methods; in particular its convergence rate does not deteriorate when refining the point cloud. In future research, we will examine its applicability to a broader range of problems and investigate its advantages in terms of computational performance
    corecore