442 research outputs found
A COMPREHENSIVE STUDY OF THE NEUTRON ACTIVATION ANALYSIS OF URANIUM BY DELAYED-NEUTRON COUNTING
The method of neutron activation analysis of U by delayed-neutron counting was investigated in order to ascertain if the method would be suitable for routine application to such analyses. It was shown that the method can be used extensively and routinely for the determination of U. Emphasis was placed on the determination of U in the types of sample materials encountered in nuclear technology. Determinations of U were made on such materials as ores, granite, sea sediments, biological tissue, graphite, and metal alloys. The method is based upon the fact that delayed neutrons are emitted from fission products from the interaction of neutrons with U/sup 235/. Since the U/sup 235/ component of U undergoes most of the fissions when a sample is in a neutron flux, the method is predominately one for the determination of U/sup 235/. The total U in a sample or the isotopic composition of the U in a sample can be determined provided there is a prior knowledge of one of these quantities. The U/sup 235/ content of a test sample is obtained by comparing its delayed-neutron count to that obtained with a comparator sample containing a known quantity of U/sup 235/. (auth
Microwave losses of bulk CaC6
We report a study of the temperature dependence of the surface resistance RS
in the graphite intercalated compound (GIC) CaC6, where superconductivity at
11.5 K was recently discovered. Experiments are carried out using a copper
dielectrically loaded cavity operating at 7 GHz in a "hot finger"
configuration. Bulk CaC6 samples have been synthesized from highly oriented
pyrolytic graphite. Microwave data allows to extract unique information on the
quasiparticle density and on the nature of pairing in superconductors. The
analysis of RS(T) confirms our recent experimental findings that CaC6 behaves
as a weakly-coupled, fully gapped, superconductor.Comment: 2 pages, submitted to Physica C (M2S-HTSC 2006 Proceedings
Pair Phase Fluctuations and the Pseudogap
The single-particle density of states and the tunneling conductance are
studied for a two-dimensional BCS-like Hamiltonian with a d_{x^2-y^2}-gap and
phase fluctuations. The latter are treated by a classical Monte Carlo
simulation of an XY model. Comparison of our results with recent scanning
tunneling spectra of Bi-based high-T_c cuprates supports the idea that the
pseudogap behavior observed in these experiments can be understood as arising
from phase fluctuations of a d_{x^2-y^2} pairing gap whose amplitude forms on
an energy scale set by T_c^{MF} well above the actual superconducting
transition.Comment: 5 pages, 6 eps-figure
Phase-fluctuation induced reduction of the kinetic energy at the superconducting transition
Recent reflectivity measurements provide evidence for a "violation" of the
in-plane optical integral in the underdoped high-T_c compound
Bi_2Sr_2CaCu_2O_{8+\delta} up to frequencies much higher than expected by
standard BCS theory. The sum rule violation may be related to a loss of
in-plane kinetic energy at the superconducting transition. Here, we show that a
model based on phase fluctuations of the superconducting order parameter can
account for this change of in-plane kinetic energy at T_c. The change is due to
a transition from a phase-incoherent Cooper-pair motion in the pseudogap regime
above T_c to a phase-coherent motion at T_c.Comment: 5 pages, 3 eps-figure
Low temperature electronic properties of Sr_2RuO_4 I: Microscopic model and normal state properties
Starting from the quasi one-dimensional kinetic energy of the d_{yz} and
d_{zx} bands we derive a bosonized description of the correlated electron
system in Sr_2RuO_4. At intermediate coupling the magnetic correlations have a
quasi one-dimensional component along the diagonals of the basal plane of the
tetragonal unit cell that accounts for the observed neutron scattering results.
Together with two-dimensional correlations the model consistently accounts for
the normal phase specific heat, cyclotron mass enhancement, static
susceptibility, and Wilson ratio and implies an anomalous high temperature
resistivity.Comment: 12 pages REVTEX, 6 figure
Tunneling spectra of submicron BiSrCaCuO intrinsic Josephson junctions: evolution from superconducting gap to pseudogap
Tunneling spectra of near optimally doped, submicron
BiSrCaCuO intrinsic Josephson junctions are presented,
and examined in the region where the superconducting gap evolves into
pseudogap. The spectra are analyzed using a self-energy model, proposed by
Norman {\it et al.}, in which both quasiparticle scattering rate and
pair decay rate are considered. The density of states derived
from the model has the familiar Dynes' form with a simple replacement of
by = ( + )/2. The
parameter obtained from fitting the experimental spectra shows a roughly linear
temperature dependence, which puts a strong constraint on the relation between
and . We discuss and compare the Fermi arc behavior
in the pseudogap phase from the tunneling and angle-resolved photoemission
spectroscopy experiments. Our results indicate an excellent agreement between
the two experiments, which is in favor of the precursor pairing view of the
pseudogap.Comment: 7 pages, 6 figure
Dispersion of Ordered Stripe Phases in the Cuprates
A phase separation model is presented for the stripe phase of the cuprates,
which allows the doping dependence of the photoemission spectra to be
calculated. The idealized limit of a well-ordered array of magnetic and charged
stripes is analyzed, including effects of long-range Coulomb repulsion.
Remarkably, down to the limit of two-cell wide stripes, the dispersion can be
interpreted as essentially a superposition of the two end-phase dispersions,
with superposed minigaps associated with the lattice periodicity. The largest
minigap falls near the Fermi level; it can be enhanced by proximity to a (bulk)
Van Hove singularity. The calculated spectra are dominated by two features --
this charge stripe minigap plus the magnetic stripe Hubbard gap. There is a
strong correlation between these two features and the experimental
photoemission results of a two-peak dispersion in LaSrCuO, and
the peak-dip-hump spectra in BiSrCaCuO. The
differences are suggestive of the role of increasing stripe fluctuations. The
1/8 anomaly is associated with a quantum critical point, here expressed as a
percolation-like crossover. A model is proposed for the limiting minority
magnetic phase as an isolated two-leg ladder.Comment: 24 pages, 26 PS figure
Origins of the Ambient Solar Wind: Implications for Space Weather
The Sun's outer atmosphere is heated to temperatures of millions of degrees,
and solar plasma flows out into interplanetary space at supersonic speeds. This
paper reviews our current understanding of these interrelated problems: coronal
heating and the acceleration of the ambient solar wind. We also discuss where
the community stands in its ability to forecast how variations in the solar
wind (i.e., fast and slow wind streams) impact the Earth. Although the last few
decades have seen significant progress in observations and modeling, we still
do not have a complete understanding of the relevant physical processes, nor do
we have a quantitatively precise census of which coronal structures contribute
to specific types of solar wind. Fast streams are known to be connected to the
central regions of large coronal holes. Slow streams, however, appear to come
from a wide range of sources, including streamers, pseudostreamers, coronal
loops, active regions, and coronal hole boundaries. Complicating our
understanding even more is the fact that processes such as turbulence,
stream-stream interactions, and Coulomb collisions can make it difficult to
unambiguously map a parcel measured at 1 AU back down to its coronal source. We
also review recent progress -- in theoretical modeling, observational data
analysis, and forecasting techniques that sit at the interface between data and
theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue
connected with a 2016 ISSI workshop on "The Scientific Foundations of Space
Weather." 44 pages, 9 figure
Measurement of and charged current inclusive cross sections and their ratio with the T2K off-axis near detector
We report a measurement of cross section and the first measurements of the cross section
and their ratio
at (anti-)neutrino energies below 1.5
GeV. We determine the single momentum bin cross section measurements, averaged
over the T2K -flux, for the detector target material (mainly
Carbon, Oxygen, Hydrogen and Copper) with phase space restricted laboratory
frame kinematics of 500 MeV/c. The
results are and $\sigma(\nu)=\left( 2.41\
\pm0.022{\rm{(stat.)}}\pm0.231{\rm (syst.)}\ \right)\times10^{-39}^{2}R\left(\frac{\sigma(\bar{\nu})}{\sigma(\nu)}\right)=
0.373\pm0.012{\rm (stat.)}\pm0.015{\rm (syst.)}$.Comment: 18 pages, 8 figure
Genetic variation near IRS 1 is associated with adiposity and a favorable metabolic profile in U.S.Hispanics/Latinos: IRS1Variation, Adiposity, and Metabolic Profile
We examined associations of IRS1 genetic variation with adiposity and metabolic profile in US Hispanic/Latino individuals of diverse backgrounds
- âŠ