44 research outputs found
Blockade of insulin-like growth factors increases efficacy of paclitaxel in metastatic breast cancer.
Breast cancer remains the leading cause of cancer death in women owing to metastasis and the development of resistance to established therapies. Macrophages are the most abundant immune cells in the breast tumor microenvironment and can both inhibit and support cancer progression. Thus, gaining a better understanding of how macrophages support cancer could lead to the development of more effective therapies. In this study, we find that breast cancer-associated macrophages express high levels of insulin-like growth factors 1 and 2 (IGFs) and are the main source of IGFs within both primary and metastatic tumors. In total, 75% of breast cancer patients show activation of insulin/IGF-1 receptor signaling and this correlates with increased macrophage infiltration and advanced tumor stage. In patients with invasive breast cancer, activation of Insulin/IGF-1 receptors increased to 87%. Blocking IGF in combination with paclitaxel, a chemotherapeutic agent commonly used to treat breast cancer, showed a significant reduction in tumor cell proliferation and lung metastasis in pre-clinical breast cancer models compared to paclitaxel monotherapy. Our findings provide the rationale for further developing the combination of paclitaxel with IGF blockers for the treatment of invasive breast cancer, and Insulin/IGF1R activation and IGF+ stroma cells as potential biomarker candidates for further evaluation
Genome-Wide Distribution of RNA-DNA Hybrids Identifies RNase H Targets in tRNA Genes, Retrotransposons and Mitochondria
During transcription, the nascent RNA can invade the DNA template, forming extended RNA-DNA duplexes (R-loops). Here we employ ChIP-seq in strains expressing or lacking RNase H to map targets of RNase H activity throughout the budding yeast genome. In wild-type strains, R-loops were readily detected over the 35S rDNA region, transcribed by Pol I, and over the 5S rDNA, transcribed by Pol III. In strains lacking RNase H activity, R-loops were elevated over other Pol III genes, notably tRNAs, SCR1 and U6 snRNA, and were also associated with the cDNAs of endogenous TY1 retrotransposons, which showed increased rates of mobility to the 5'-flanking regions of tRNA genes. Unexpectedly, R-loops were also associated with mitochondrial genes in the absence of RNase H1, but not of RNase H2. Finally, R-loops were detected on actively transcribed protein-coding genes in the wild-type, particularly over the second exon of spliced ribosomal protein genes
Characterization of R-Loop Structures Using Single-Molecule R-Loop Footprinting and Sequencing
R-loops are three-stranded structures that form during transcription when the nascent RNA hybridizes with the template DNA resulting in a DNA:RNA hybrid and a looped-out single-stranded DNA (ssDNA) strand. These structures are important for normal cellular processes and aberrant R-loop formation has been implicated in a number of pathological outcomes, including certain cancers and neurodegenerative diseases. Mapping R-loops has primarily been performed using DRIP (DNA:RNA immunoprecipitation) based methods that are dependent on the anti-DNA:RNA hybrid S9.6 antibody and short-read sequencing. While DRIP-based methods are robust and report R-loop formation genome-wide, they only do so at the population average level; interrogating R-loop formation at the single molecule level is not feasible with such approaches. Here we present single molecule R-loop footprinting (SMRF-seq), a method that relies on the chemical reactivity of the displaced ssDNA strand to non-denaturing sodium bisulfite and single molecule long-read sequencing as a readout, to characterize R-loops. SMRF-seq can be used independently of S9.6 to generate high resolution, strand-specific, maps of individual R-loops at ultra-deep coverage on kilobases-length DNA fragments