42 research outputs found
High Incidence of Unplanned Pregnancy after Antiretroviral Therapy Initiation: Findings from a Prospective Cohort Study in South Africa
Increased fertility rates in HIV-infected women receiving antiretroviral therapy (ART) have been attributed to improved immunological function; it is unknown to what extent the rise in pregnancy rates is due to unintended pregnancies.Non-pregnant women ages 18-35 from four public-sector ART clinics in Johannesburg, South Africa, were enrolled into a prospective cohort and followed from August 2009-March 2011. Fertility intentions, contraception and pregnancy status were measured longitudinally at participants' routine ART clinic visits.Of the 850 women enrolled, 822 (97%) had at least one follow-up visit and contributed 745.2 person-years (PY) at-risk for incident pregnancy. Overall, 170 pregnancies were detected in 161 women (incidence rate [IR]: 21.6/100 PY [95% confidence interval (CI): 18.5-25.2]). Of the 170 pregnancies, 105 (62%) were unplanned. Unmet need for contraception was 50% higher in women initiating ART in the past year as compared to women on ART>1 year (prevalence ratio 1.5 [95% CI: 1.1-2.0]); by two years post-ART initiation, nearly one quarter of women had at least one unplanned pregnancy. Cumulative incidence of pregnancy was equally high among recent ART initiators and ART experienced participants: 23.9% [95% CI: 16.4-34.1], 15.9% [12.0-20.8], and 21.0% [16.8-26.1] for women on ART 0-1 yr, >1 yr-2 yrs, and >2 yrs respectively (log-rank, p = 0.54). Eight hormonal contraceptive failures were detected [IR: 4.4 [95% CI: 2.2-8.9], 7/8 among women using injectable methods. Overall 47% (80/170) of pregnancies were not carried to term.Rates of unintended pregnancies among women on ART are high, including women recently initiating ART with lower CD4 counts and higher viral loads. A substantial burden of pregnancy loss was observed. Integration of contraceptive services and counselling into ART care is necessary to reduce maternal and child health risks related to mistimed and unwanted pregnancies. Further research into injectable contraceptive failures on ART is warranted
Herbivore Preference for Native vs. Exotic Plants: Generalist Herbivores from Multiple Continents Prefer Exotic Plants That Are Evolutionarily Naïve
Enemy release and biotic resistance are competing, but not mutually exclusive,
hypotheses addressing the success or failure of non-native plants entering a new
region. Enemy release predicts that exotic plants become invasive by escaping
their co-adapted herbivores and by being unrecognized or unpalatable to native
herbivores that have not been selected to consume them. In contrast, biotic
resistance predicts that native generalist herbivores will suppress exotic
plants that will not have been selected to deter these herbivores. We tested
these hypotheses using five generalist herbivores from North or South America
and nine confamilial pairs of native and exotic aquatic plants. Four of five
herbivores showed 2.4–17.3 fold preferences for exotic over native plants.
Three species of South American apple snails (Pomacea sp.)
preferred North American over South American macrophytes, while a North American
crayfish Procambarus spiculifer preferred South American,
Asian, and Australian macrophytes over North American relatives. Apple snails
have their center of diversity in South America, but a single species
(Pomacea paludosa) occurs in North America. This species,
with a South American lineage but a North American distribution, did not
differentiate between South American and North American plants. Its preferences
correlated with preferences of its South American relatives rather than with
preferences of the North American crayfish, consistent with evolutionary inertia
due to its South American lineage. Tests of plant traits indicated that the
crayfish responded primarily to plant structure, the apple snails primarily to
plant chemistry, and that plant protein concentration played no detectable role.
Generalist herbivores preferred non-native plants, suggesting that intact guilds
of native, generalist herbivores may provide biotic resistance to plant
invasions. Past invasions may have been facilitated by removal of native
herbivores, introduction of non-native herbivores (which commonly prefer native
plants), or both
Recommended from our members
Intermediate predator naïveté and sex-skewed vulnerability predict the impact of an invasive higher predator
The spread of invasive species continues to reduce biodiversity across all regions and habitat types globally. However, invader impact prediction can be nebulous, and approaches often fail to integrate coupled direct and indirect invader effects. Here, we examine the ecological impacts of an invasive higher predator on lower trophic groups, further developing methodologies to more holistically quantify invader impact. We employ functional response (FR, resource use under different densities) and prey switching experiments to examine the trait- and density-mediated impacts of the invasive mosquitofish Gambusia affinis on an endemic intermediate predator Lovenula raynerae (Copepoda). Lovenula raynerae effectively consumed larval mosquitoes, but was naïve to mosquitofish cues, with attack rates and handling times of the intermediate predator unaffected by mosquitofish cue-treated water. Mosquitofish did not switch between male and female prey, consistently displaying a strong preference for female copepods. We thus demonstrate a lack of risk-reduction activity in the presence of invasive fish by L. raynerae and, in turn, high susceptibility of such intermediate trophic groups to invader impact. Further, we show that mosquitofish demonstrate sex-skewed predator selectivity towards intermediate predators of mosquito larvae, which may affect predator population demographics and, perversely, increase disease vector proliferations. We advocate the utility of FRs and prey switching combined to holistically quantify invasive species impact potential on native organisms at multiple trophic levels