8 research outputs found

    Association between low-dose pulsed intravenous cyclophosphamide therapy and amenorrhea in patients with systemic lupus erythematosus: A case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The risk for amenorrhea following treatment of systemic lupus erythematosus (SLE) patients with low-dose intravenous cyclophosphamide (IVCY) has not been fully explored. Our objective was to ascertain the incidence of amenorrhea following treatment with low-dose IVCY and the association between amenorrhea and the clinical parameters of SLE.</p> <p>Methods</p> <p>A case-control retrospective study of premenopausal women ≤ 45 years old who had been treated for SLE with low-dose IVCY (500 mg/body/pulse) plus high-dose glucocorticoids (0.8-1.0 mg/kg/day of prednisolone; IVCY group) or glucocorticoids alone (0.8-1.0 mg/kg/day of prednisolone; steroid group) in our hospital from 2000 through 2009 was conducted using a questionnaire survey and medical record review.</p> <p>Results</p> <p>Twenty-nine subjects in the IVCY group and 33 subjects in the steroid group returned the questionnaire. A multivariate analysis revealed that age at initiation of treatment ≥ 40 years old was significantly associated with amenorrhea [<it>p </it>= 0.009; odds ratio (OR) 10.2; 95% confidence interval (CI) 1.8-58.7]. IVCY treatment may display a trend for association with amenorrhea (<it>p </it>= 0.07; OR 2.9; 95% CI 0.9-9.4). Sustained amenorrhea developed in 4 subjects in the IVCY group and 1 subject in the steroid group; all of these patients were ≥ 40 years old. Menses resumed in all subjects < 40 years old, irrespective of treatment.</p> <p>Conclusions</p> <p>Although low-dose IVCY may increase the risk for amenorrhea, our data suggest that patients < 40 years old have a minimum risk for sustained amenorrhea with low-dose IVCY treatment. A higher risk for sustained amenorrhea following treatment with IVCY is a consideration for patients ≥ 40 years old.</p

    Physics of Neutron Star Crusts

    Get PDF
    The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.Comment: 182 pages, published version available at <http://www.livingreviews.org/lrr-2008-10

    Sex and Gender Differences in Autoimmune Diseases

    No full text
    corecore