13 research outputs found

    Perforator anatomy of the radial forearm free flap versus the ulnar forearm free flap for head and neck reconstruction

    No full text
    The aim of this study was to investigate the vascular anatomy of the distal forearm in order to optimize the choice between the radial forearm free flap and the ulnar forearm free flap and to select the best site to harvest the flap. The radial and ulnar arteries of seven fresh cadavers were injected with epoxy resin (Araldite) and the perforating arteries were dissected. The number of clinically relevant perforators from the radial and ulnar arteries was not significantly different in the distal forearm. Most perforators were located in the proximal half of the distal one third, making this part probably the safest location for flap harvest. Close to the wrist, i.e. most distally, there were more perforators on the ulnar side than on the radial side. The ulnar artery stained 77% of the skin surface area of the forearm, showing the ulnar forearm free flap to be more suitable than the radial forearm free flap for the restoration of large defects

    Perforator anatomy of the radial forearm free flap versus the ulnar forearm free flap for head and neck reconstruction

    No full text
    The aim of this study was to investigate the vascular anatomy of the distal forearm in order to optimize the choice between the radial forearm free flap and the ulnar forearm free flap and to select the best site to harvest the flap. The radial and ulnar arteries of seven fresh cadavers were injected with epoxy resin (Araldite) and the perforating arteries were dissected. The number of clinically relevant perforators from the radial and ulnar arteries was not significantly different in the distal forearm. Most perforators were located in the proximal half of the distal one third, making this part probably the safest location for flap harvest. Close to the wrist, i.e. most distally, there were more perforators on the ulnar side than on the radial side. The ulnar artery stained 77% of the skin surface area of the forearm, showing the ulnar forearm free flap to be more suitable than the radial forearm free flap for the restoration of large defects

    Diffusion enhancement in on/off ratchets

    No full text
    We show a diffusion enhancement of suspended polystyrene particles in an electrical on/off ratchet. The enhancement can be described by a simple master equation model. Furthermore, we find that the diffusion enhancement can be described by a general curve whose shape is only determined by the asymmetry of the ratchet repeat unit. The scaling of this curve can be explained from an analytical expression valid for small off-times. Finally, we demonstrate how the master equation model can be used to find the driving parameters for optimal particle separation. (C) 2013 American Institute of Physics

    Scaling of characteristic frequencies of organic electronic ratchets

    Get PDF
    The scaling of the characteristic frequencies of electronic ratchets operating in a flashing mode is investigated by measurements and numerical simulations. The ratchets are based on organic field effect transistors operated in accumulation mode. Oscillating potentials applied to asymmetrically spaced interdigitated finger electrodes embedded in the gate dielectric create a time-dependent, spatially asymmetric perturbation of the transistor channel potential. As a result a net DC current can flow between source and drain despite zero source-drain bias. The frequency at current maximum is linearly dependent on the charge carrier density and the charge carrier mobility and inversely proportional to the squared length of the ratchet period, which can be related to the RC-time of one asymmetric unit. Counter-intuitively, it is independent of driving amplitude. Furthermore, the frequency at current maximum depends on the asymmetry of the ratchet potential whereas the frequency of maximum charge pumping efficiency does not

    Harvesting randomness

    No full text

    High efficiency dielectrophoretic ratchet

    Get PDF
    Brownian ratchets enable the use of thermal motion in performing useful work. They typically employ spatial asymmetry to rectify nondirected external forces that drive the system out of equilibrium (cf. running marbles on a shaking washboard). The major application foreseen for Brownian ratchets is high-selectivity fractionation of particle or molecule distributions. Here, we investigate the functioning of an important model system, the on/off ratchet for water-suspended particles, in which interdigitated finger electrodes can be switched on and off to create a time-dependent, spatially periodic but asymmetric potential. Surprisingly, we find that mainly dielectrophoretic rather than electrophoretic forces are responsible for the ratchet effect. This has major implications for the (a)symmetry of the ratchet potential and the settings needed for optimal performance. We demonstrate that by applying a potential offset the ratchet can be optimized such that its particle displacement efficiency reaches the theoretical upper limit corresponding to the electrode geometry and particle size. Efficient fractionation based on size selectivity is therefore not only possible for charged species, but also for uncharged ones, which greatly expands the applicability range of this type of Brownian ratchet

    Normal and inverted regimes of charge transfer controlled by density of states at polymer electrodes

    No full text
    Conductive polymer electrodes have exceptional promise for next-generation bioelectronics and energy conversion devices due to inherent mechanical flexibility, printability, biocompatibility, and low cost. Conductive polymers uniquely exhibit hybrid electronic-ionic transport properties that enable novel electrochemical device architectures, an advantage over inorganic counterparts. Yet critical structure-property relationships to control the potential-dependent rates of charge transfer at polymer/electrolyte interfaces remain poorly understood. Herein, we evaluate the kinetics of charge transfer between electrodeposited poly-(3-hexylthiophene) films and a model redox-active molecule, ferrocenedimethanol. We show that the kinetics directly follow the potential-dependent occupancy of electronic states in the polymer. The rate increases then decreases with potential *(both normal and inverted kinetic regimes), a phenomenon distinct from inorganic semiconductors. This insight can be invoked to design polymer electrodes with kinetic selectivity toward redox active species and help guide synthetic approaches for the design of alternative device architectures and approaches.Defense and Security Research Institute through the Technology and Research Initiative Fund (TRIF) of ArizonaUA Open Access Publishing Fund.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Magnetic quantum ratchet effect in graphene

    No full text
    A periodically driven system with spatial asymmetry can exhibit a directed motion facilitated by thermal or quantum fluctuations. This so-called ratchet effect has fascinating ramifications in engineering and natural sciences. Graphene is nominally a symmetric system. Driven by a periodic electric field, no directed electric current should flow. However, if the graphene has lost its spatial symmetry due to its substrate or adatoms, an electronic ratchet motion can arise. We report an experimental demonstration of such an electronic ratchet in graphene layers, proving the underlying spatial asymmetry. The orbital asymmetry of the Dirac fermions is induced by an in-plane magnetic field, whereas the periodic driving comes from terahertz radiation. The resulting magnetic quantum ratchet transforms the a.c. power into a d.c. current, extracting work from the out-of-equilibrium electrons driven by undirected periodic forces. The observation of ratchet transport in this purest possible two-dimensional system indicates that the orbital effects may appear and be substantial in other two-dimensional crystals such as boron nitride, molybdenum dichalcogenides and related heterostructures. The measurable orbital effects in the presence of an in-plane magnetic field provide strong evidence for the existence of structure inversion asymmetry in graphene
    corecore