9 research outputs found

    Lipid-Induced Hepatocyte-Derived Extracellular Vesicles Regulate Hepatic Stellate Cells via MicroRNA Targeting Peroxisome Proliferator-Activated Receptor-γ

    No full text
    Background & Aims: Hepatic stellate cells (HSCs) play a key role in liver fibrosis in various chronic liver disorders including nonalcoholic fatty liver disease (NAFLD). The development of liver fibrosis requires a phenotypic switch from quiescent to activated HSCs. The trigger for HSC activation in NAFLD remain poorly understood. We investigated the role and molecular mechanism of extracellular vesicles (EVs) released by hepatocytes during lipotoxicity in modulation of HSC phenotype. Methods: EVs were isolated from fat-laden hepatocytes by differential centrifugation and incubated with HSCs. EV internalization and HSC activation, migration, and proliferation were assessed. Loss- and gain-of-function studies were performed to explore the potential role of peroxisome proliferator-activated receptor-γ (PPAR-γ)-targeting microRNAs (miRNAs) carried by EVs into HSC. Results: Hepatocyte-derived EVs released during lipotoxicity are efficiently internalized by HSCs resulting in their activation, as shown by marked up-regulation of profibrogenic genes (collagen-I, α-smooth muscle actin, and tissue inhibitor of metalloproteinases-2), proliferation, chemotaxis, and wound-healing responses. These changes were associated with miRNAs shuttled by EVs and suppression of PPAR-γ expression in HSCs. The hepatocyte-derived EV miRNA content included various miRNAs that are known inhibitors of PPAR-γ expression, with miR-128-3p being the most efficiently transferred. Furthermore, loss- and gain-of-function studies identified miR-128-3p as a central modulator of the effects of EVs on PPAR-γ inhibition and HSC activation. Conclusions: Our findings demonstrate a link between fat-laden hepatocyte-derived EVs and liver fibrosis and have potential implications for the development of novel antifibrotic targets for NAFLD and other fibrotic diseases

    Radiotherapy-induced miR-223 prevents relapse of breast cancer by targeting the EGF pathway

    Get PDF
    In breast cancer (BC) patients, local recurrences often arise in proximity of the surgical scar, suggesting that response to surgery may have a causative role. Radiotherapy (RT) after lumpectomy significantly reduces the risk of recurrence. We investigated the direct effects of surgery and of RT delivered intraoperatively (IORT), by collecting irradiated and non-irradiated breast tissues from BC patients, after tumor removal. These breast tissue specimens have been profiled for their microRNA (miR) expression, in search of differentially expressed miR among patients treated or not with IORT. Our results demonstrate that IORT elicits effects that go beyond the direct killing of residual tumor cells. IORT altered the wound response, inducing the expression of miR-223 in the peri-tumoral breast tissue. miR-223 downregulated the local expression of epidermal growth factor (EGF), leading to decreased activation of EGF receptor (EGFR) on target cells and, eventually, dampening a positive EGF-EGFR autocrine/paracrine stimulation loop induced by the post-surgical wound-healing response. Accordingly, both RT-induced miR-223 and peri-operative inhibition of EGFR efficiently prevented BC cell growth and reduced recurrence formation in mouse models of BC. Our study uncovers unknown effects of RT delivered on a wounded tissue and prompts to the use of anti-EGFR treatments, in a peri-operative treatment schedule, aimed to timely treat BC patients and restrain recurrence formation.Oncogene advance online publication, 15 February 2016; doi:10.1038/onc.2016.23

    Emerging therapeutics for diabetic retinopathy: potential therapies for the new millennium

    No full text
    corecore