38 research outputs found

    Development of the Synarcual in the Elephant Sharks (Holocephali; Chondrichthyes): Implications for Vertebral Formation and Fusion

    Get PDF
    The synarcual is a structure incorporating multiple elements of two or more anterior vertebrae of the axial skeleton, forming immediately posterior to the cranium. It has been convergently acquired in the fossil group ‘Placodermi’, in Chondrichthyes (Holocephali, Batoidea), within the teleost group Syngnathiformes, and to varying degrees in a range of mammalian taxa. In addition, cervical vertebral fusion presents as an abnormal pathology in a variety of human disorders. Vertebrae develop from axially arranged somites, so that fusion could result from a failure of somite segmentation early in development, or from later heterotopic development of intervertebral bone or cartilage. Examination of early developmental stages indicates that in the Batoidea and the ‘Placodermi’, individual vertebrae developed normally and only later become incorporated into the synarcual, implying regular somite segmenta- tion and vertebral development. Here we show that in the holocephalan Callorhinchus milii, uniform and regular vertebral segmentation also occurs, with anterior individual vertebra developing separately with subsequent fusion into a synarcual. Vertebral elements forming directly behind the synarcual continue to be incorporated into the synarcual through growth. This appears to be a common pattern through the Vertebrata. Research into human disor- ders, presenting as cervical fusion at birth, focuses on gene misexpression studies in humans and other mammals such as the mouse. However, in chondrichthyans, vertebral fusion represents the normal morphology, moreover, taxa such Leucoraja (Batoidea) and Callorhinchus (Holocephali) are increasingly used as laboratory animals, and the Callor- hinchus genome has been sequenced and is available for study. Our observations on synarcual development in three major groups of early jawed vertebrates indicate that fusion involves heterotopic cartilage and perichondral bone/mineralised cartilage developing outside the regular skeleton. We suggest that chondrichthyans have potential as ideal extant models for identifying the genes involved in these processes, for application to human skeletal heterotopic disorders

    YAP/TAZ upstream signals and downstream responses

    Get PDF

    Evolution and development of the synarcual in early vertebrates

    No full text
    The synarcual is a structure incorporating the anterior vertebrae of the axial skeleton and occurs in vertebrate taxa such as the fossil group Placodermi and the Chondrichthyes (Holocephali, Batoidea). Although the synarcual varies morphologically in these groups, it represents the first indication, phylogenetically, of a differentiation of the vertebral column into separate regions. Among the placoderms, the synarcual of Cowralepis mclachlani Ritchie, 2005 (Arthrodira) shows substantial changes during ontogeny to produce an elongate, spool-shaped structure with a well-developed dorsal keel. Because the placoderm synarcual is covered in perichondral bone, the ontogenetic history of this Cowralepis specimen is preserved as it developed anteroposteriorly, dorsally and ventrally. As well, in the placoderm Materpiscis attenboroughi Long et al., 2008 (Ptyctodontida), incomplete fusion at the posterior synarcual margin indicates that both neural and haemal arch vertebral elements are added to the synarcual. A survey of placoderm synarcuals shows that taxa such as Materpiscis and Cowralepis are particularly informative because perichondral ossification occurs prior to synarcual fusion such that individual vertebral elements can be identified. In other placoderm synarcuals (e.g. Nefudina qalibahensis Lelièvre et al., 1995; Rhenanida), cartilaginous vertebral elements fuse prior to perichondral ossification so that individual elements are more difficult to recognize. This ontogenetic development in placoderms can be compared to synarcual development in Recent chondrichthyans; the incorporation of neural and haemal elements is more similar to the holocephalans, but differs from the batoid chondrichthyans

    Role of Yap/Taz in mechanotransduction

    No full text
    Cells perceive their microenvironment not only through soluble signals but also through physical and mechanical cues, such as extracellular matrix (ECM) stiffness or confined adhesiveness. By mechanotransduction systems, cells translate these stimuli into biochemical signals controlling multiple aspects of cell behaviour, including growth, differentiation and cancer malignant progression, but how rigidity mechanosensing is ultimately linked to activity of nuclear transcription factors remains poorly understood. Here we report the identification of the Yorkie-homologues YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif, also known as WWTR1) as nuclear relays of mechanical signals exerted by ECM rigidity and cell shape. This regulation requires Rho GTPase activity and tension of the actomyosin cytoskeleton, but is independent of the Hippo/LATS cascade. Crucially, YAP/TAZ are functionally required for differentiation of mesenchymal stem cells induced by ECM stiffness and for survival of endothelial cells regulated by cell geometry; conversely, expression of activated YAP overrules physical constraints in dictating cell behaviour. These findings identify YAP/TAZ as sensors and mediators of mechanical cues instructed by the cellular microenvironment
    corecore