11 research outputs found

    Dietary tuna hydrolysate modulates growth performance, immune response, intestinal morphology and resistance to Streptococcus iniae in juvenile barramundi, Lates calcarifer

    Get PDF
    This study investigated the effects of tuna hydrolysate (TH) inclusion in fishmeal (FM) based diets on the growth performance, innate immune response, intestinal health and resistance to Streptococcus iniae infection in juvenile barramundi, Lates calcarifer. Five isonitrogenous and isoenergetic experimental diets were prepared with TH, replacing FM at levels of 0% (control) 5%, 10%, 15% and 20%, and fed fish to apparent satiation three times daily for 8 weeks. The results showed that fish fed diets containing 5% and 10% TH had significantly higher final body weight and specific growth rate than the control. A significant reduction in blood glucose was found in fish fed 10%, 15% and 20% TH compared to those in the control whereas none of the other measured blood and serum indices were influenced by TH inclusion. Histological observation revealed a significant enhancement in goblet cell numbers in distal intestine of fish fed 5 to 10% TH in the diet. Moreover, fish fed 10% TH exhibited the highest resistance against Streptococcus iniae infection during a bacterial challenge trial. These findings therefore demonstrate that the replacement of 5 to 10% FM with TH improves growth, immune response, intestinal health and disease resistance in juvenile barramundi

    Plasma Nesfatin-1 Is Not Affected by Long-Term Food Restriction and Does Not Predict Rematuration among Iteroparous Female Rainbow Trout (Oncorhynchus mykiss)

    Get PDF
    The metabolic peptide hormone nesfatin-1 has been linked to the reproductive axis in fishes. The purpose of this study was to determine how energy availability after spawning affects plasma levels of nesfatin-1, the metabolic peptide hormone ghrelin, and sex steroid hormones in rematuring female rainbow trout (Oncorhynchus mykiss). To limit reproductive maturation, a group of female trout was food-restricted after spawning and compared with a control group that was fed a standard broodstock ration. The experiment was conducted twice, once using two-year-old trout (second-time spawners) and once using three-year-old trout (third-time spawners). During monthly sampling, blood was collected from all fish, and a subset of fish from each treatment was sacrificed for pituitaries. Pituitary follicle-stimulating hormone-beta (fsh-β) mRNA expression was analyzed with q-RT-PCR; plasma hormone levels were quantified by radioimmunoassay (17β-estradiol and ghrelin) and enzyme-linked immunosorbent assay (11-keto-testosterone and nesfatin-1). Although plasma nesfatin-1 levels increased significantly in the months immediately after spawning within both feeding treatments, plasma nesfatin-1 did not differ significantly between the two treatments at any point. Similarly, plasma ghrelin levels did not differ significantly between the two treatments at any point. Food restriction arrested ovarian development by 15–20 weeks after spawning, shown by significantly lower plasma E2 levels among restricted-ration fish. Pituitary fsh-β mRNA levels were higher among control-ration fish than restricted-ration fish starting at 20 weeks, but did not differ significantly between treatment groups until 30 weeks after spawning. Within both treatment groups, plasma 11-KT was elevated immediately after spawning and rapidly decreased to and persisted at low levels; starting between 20 and 25 weeks after spawning, plasma 11-KT was higher among control-ration fish than restricted-ration fish. The results from these experiments do not provide support for plasma nesfatin-1 as a signal for the initiation of reproductive development in rematuring female rainbow trout
    corecore