14 research outputs found

    Report 48: The value of vaccine booster doses to mitigate the global impact of the Omicron SARS-CoV-2 variant

    Get PDF
    Vaccines have played a central role in mitigating severe disease and death from COVID-19 in the past 12 months. However, efficacy wanes over time and this loss of protection will be compounded by the emergence of the Omicron variant. By fitting an immunological model to population-level vaccine effectiveness data, we estimate that neutralizing antibody titres for Omicron are reduced by 4.5-fold (95% CrI 3.1–7.1) compared to the Delta variant. This is predicted to result in a drop in vaccine efficacy against severe disease (hospitalisation) from 96.5% (95% CrI 96.1%–96.8%) against Delta to 80.1% (95% CrI 76.3%–83.2%) against Omicron for the Pfizer-BioNTech booster by 60 days post boost if NAT decay at the same rate following boosting as following the primary course, and from 97.6% (95% CrI 97.4%-97.9%) against Delta to 85.9% (95% CrI 83.1%-88.3%) against Omicron if NAT decay at half the rate observed after the primary course. Integrating this immunological model within a model of SARS-CoV-2 transmission, we show that booster doses will be critical to mitigate the impact of future Omicron waves in countries with high levels of circulating virus. They will also be needed in “zero-COVID” countries where there is little prior infection-induced immunity in order to open up safely. Where dose supply is limited, targeting boosters to the highest risk groups to ensure continued high protection in the face of waning immunity is of greater benefit than giving these doses as primary vaccination to younger age-groups. In all scenarios it is likely that health systems will be stretched. It may be essential, therefore, to maintain and/or reintroduce NPIs to mitigate the worst impacts of the Omicron variant as it replaces the Delta variant. Ultimately, Omicron variant-specific vaccines are likely to be required

    Long-term vaccination strategies to mitigate the impact of SARS-CoV-2 transmission: A modelling study

    No full text
    Background Vaccines have reduced severe disease and death from Coronavirus Disease 2019 (COVID-19). However, with evidence of waning efficacy coupled with continued evolution of the virus, health programmes need to evaluate the requirement for regular booster doses, considering their impact and cost-effectiveness in the face of ongoing transmission and substantial infection-induced immunity. Methods and findings We developed a combined immunological-transmission model parameterised with data on transmissibility, severity, and vaccine effectiveness. We simulated Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) transmission and vaccine rollout in characteristic global settings with different population age-structures, contact patterns, health system capacities, prior transmission, and vaccine uptake. We quantified the impact of future vaccine booster dose strategies with both ancestral and variant-adapted vaccine products, while considering the potential future emergence of new variants with modified transmission, immune escape, and severity properties. We found that regular boosting of the oldest age group (75+) is an efficient strategy, although large numbers of hospitalisations and deaths could be averted by extending vaccination to younger age groups. In countries with low vaccine coverage and high infection-derived immunity, boosting older at-risk groups was more effective than continuing primary vaccination into younger ages in our model. Our study is limited by uncertainty in key parameters, including the long-term durability of vaccine and infection-induced immunity as well as uncertainty in the future evolution of the virus. Conclusions Our modelling suggests that regular boosting of the high-risk population remains an important tool to reduce morbidity and mortality from current and future SARS-CoV-2 variants. Our results suggest that focusing vaccination in the highest-risk cohorts will be the most efficient (and hence cost-effective) strategy to reduce morbidity and mortality

    Management of Fusarium Diseases

    No full text
    corecore