2 research outputs found
Gene Flow and Hybridization between Numerically Imbalanced Populations of Two Duck Species in the Falkland Islands
Interspecific hybridization is common in plants and animals, particularly in waterfowl (Anatidae). One factor shown to contribute to hybridization is restricted mate choice, which can occur when two species occur in sympatry but one is rare. The Hubbs principle, or “desperation hypothesis,” states that under such circumstances the rarer species is more likely to mate with heterospecifics. Here we report interspecific hybridization between two waterfowl species that coexist in broad sympatry and mixed flocks throughout southern South America. Speckled teal (Anas flavirostris) and yellow-billed pintails (Anas georgica) are abundant in continental South America, but in the Falkland Islands speckled teal outnumber yellow-billed pintails approximately ten to one. Using eight genetic loci (mtDNA and 7 nuclear introns) coupled with Bayesian assignment tests and relatedness analysis, we identified a speckled teal x yellow-billed pintail F1 hybrid female and her duckling sired by a male speckled teal. Although our sample in the Falkland Islands was small, we failed to identify unequivocal evidence of hybridization or introgression in a much larger sample from Argentina using a three-population “isolation with migration” coalescent analysis. While additional data are needed to determine if this event in the Falkland Islands was a rare singular occurrence, our results provide further support for the “desperation hypothesis,” which states that scarcity in one population and abundance of another will often lead to hybridization
Gene Flow and Hybridization between Numerically Imbalanced Populations of Two Duck Species on the Subantarctic Island of South Georgia
Hybridization is common between species of animals, particularly in waterfowl (Anatidae). One factor shown to promote hybridization is restricted mate choice, which can occur when 2 species occur in sympatry but one is rare. According to the Hubbs principle, or "desperation hypothesis," the rarer species is more likely to mate with heterospecifics. We report the second of 2 independent examples of hybridization between 2 species of ducks inhabiting island ecosystems in the Subantarctic and South Atlantic Ocean. Yellow-billed pintails (Anas georgica) and speckled teal (Anas flavirostris) are abundant in continental South America, where they are sympatric and coexist in mixed flocks. But on South Georgia, an isolated island in the Subantarctic, the pintail population of approximately 6000 pairs outnumbers a small breeding population of speckled teal 300∶1. Using 6 genetic loci (mtDNA and 5 nuclear introns) and Bayesian assignment tests coupled with coalescent analyses, we identified hybrid-origin speckled teal alleles in 2 pintails on South Georgia. While it is unclear whether introgression has also occurred into the speckled teal population, our data suggest that this hybridization was not a recent event, but occurred some time ago. We also failed to identify unequivocal evidence of introgression in a much larger sample of pintails and speckled teal from Argentina using a 3-population "Isolation-with-Migration" coalescent analysis. Combined with parallel findings of hybridization between these same 2 duck species in the Falkland Islands, where population ratios are reversed and pintails are outnumbered by speckled teal 1:10, our results provide further support for the desperation hypothesis, which predicts that scarcity in one population and abundance of another will often lead to hybridization. While the South Georgia pintail population appears to be thriving, it's possible that low density of conspecific mates and inverse density dependence (Allee effect) may be one factor limiting the reproductive output of the speckled teal population, and this situation may persist unless speckled teal increase in abundance on South Georgia