23 research outputs found

    Racial/Ethnic Differences in Multiple Self-Care Behaviors in Adults with Diabetes

    Get PDF
    OBJECTIVE: To assess racial/ethnic differences in multiple diabetes self-care behaviors. DESIGN: Cross-sectional study. PARTICIPANTS: 21,459 participants with diabetes in the 2003 Behavioral Risk Factor Surveillance survey. MEASUREMENTS: The study assessed self-care behaviors including physical activity, fruits/vegetables consumption, glucose testing, and foot examination, as well as a composite of the 4 self-care behaviors across racial/ethnic groups. Multiple logistic regression was used to assess the independent association between race/ethnicity, the composite variable, and each self-care behavior controlling for covariates. STATA was used for statistical analysis. RESULTS: Overall, 6% engaged in all 4 self-care behaviors, with a range of 5% in non-insulin users to 8% in insulin users. Blacks were less likely to exercise (OR 0.63, 95% CI 0.51, 0.79), while Hispanics and “others” were not significantly different from whites. Hispanics (OR 0.64, 95% CI 0.49, 0.82) and others (OR 0.69, 95% CI 0.49, 0.96) were less likely to do home glucose testing, while blacks were not significantly different from whites. Blacks (OR 1.42, 95% CI 1.12, 1.80) were more likely to do home foot examinations, while Hispanics and others were not significantly different from whites. Blacks (OR 0.56, 95% CI 0.36, 0.87) were less likely to engage in all 4 behaviors, while Hispanics and others were not significantly different from whites. There were no significant racial/ethnic differences in fruit and vegetable consumption. CONCLUSIONS: Few patients engage in multiple self-care behaviors at recommended levels, and there are significant racial/ethnic differences in physical activity, dietary, and foot care behaviors among adults with diabetes

    Metagenomic and Metabolic Profiling of Nonlithifying and Lithifying Stromatolitic Mats of Highborne Cay, The Bahamas

    Get PDF
    BACKGROUND: Stromatolites are laminated carbonate build-ups formed by the metabolic activity of microbial mats and represent one of the oldest known ecosystems on Earth. In this study, we examined a living stromatolite located within the Exuma Sound, The Bahamas and profiled the metagenome and metabolic potential underlying these complex microbial communities. METHODOLOGY/PRINCIPAL FINDINGS: The metagenomes of the two dominant stromatolitic mat types, a nonlithifying (Type 1) and lithifying (Type 3) microbial mat, were partially sequenced and compared. This deep-sequencing approach was complemented by profiling the substrate utilization patterns of the mats using metabolic microarrays. Taxonomic assessment of the protein-encoding genes confirmed previous SSU rRNA analyses that bacteria dominate the metagenome of both mat types. Eukaryotes comprised less than 13% of the metagenomes and were rich in sequences associated with nematodes and heterotrophic protists. Comparative genomic analyses of the functional genes revealed extensive similarities in most of the subsystems between the nonlithifying and lithifying mat types. The one exception was an increase in the relative abundance of certain genes associated with carbohydrate metabolism in the lithifying Type 3 mats. Specifically, genes associated with the degradation of carbohydrates commonly found in exopolymeric substances, such as hexoses, deoxy- and acidic sugars were found. The genetic differences in carbohydrate metabolisms between the two mat types were confirmed using metabolic microarrays. Lithifying mats had a significant increase in diversity and utilization of carbon, nitrogen, phosphorus and sulfur substrates. CONCLUSION/SIGNIFICANCE: The two stromatolitic mat types retained similar microbial communities, functional diversity and many genetic components within their metagenomes. However, there were major differences detected in the activity and genetic pathways of organic carbon utilization. These differences provide a strong link between the metagenome and the physiology of the mats, as well as new insights into the biological processes associated with carbonate precipitation in modern marine stromatolites

    The mechanisms by which polyamines accelerate tumor spread

    Get PDF
    Increased polyamine concentrations in the blood and urine of cancer patients reflect the enhanced levels of polyamine synthesis in cancer tissues arising from increased activity of enzymes responsible for polyamine synthesis. In addition to their de novo polyamine synthesis, cells can take up polyamines from extracellular sources, such as cancer tissues, food, and intestinal microbiota. Because polyamines are indispensable for cell growth, increased polyamine availability enhances cell growth. However, the malignant potential of cancer is determined by its capability to invade to surrounding tissues and metastasize to distant organs. The mechanisms by which increased polyamine levels enhance the malignant potential of cancer cells and decrease anti-tumor immunity are reviewed. Cancer cells with a greater capability to synthesize polyamines are associated with increased production of proteinases, such as serine proteinase, matrix metalloproteinases, cathepsins, and plasminogen activator, which can degrade surrounding tissues. Although cancer tissues produce vascular growth factors, their deregulated growth induces hypoxia, which in turn enhances polyamine uptake by cancer cells to further augment cell migration and suppress CD44 expression. Increased polyamine uptake by immune cells also results in reduced cytokine production needed for anti-tumor activities and decreases expression of adhesion molecules involved in anti-tumor immunity, such as CD11a and CD56. Immune cells in an environment with increased polyamine levels lose anti-tumor immune functions, such as lymphokine activated killer activities. Recent investigations revealed that increased polyamine availability enhances the capability of cancer cells to invade and metastasize to new tissues while diminishing immune cells' anti-tumor immune functions

    The natural polyamines and the immune system

    No full text

    New multi-scale perspectives on the stromatolites of Shark Bay, Western Australia

    No full text
    A recent field-intensive program in Shark Bay, Western Australia provides new multi-scale perspectives on the world’s most extensive modern stromatolite system. Mapping revealed a unique geographic distribution of morphologically distinct stromatolite structures, many of them previously undocumented. These distinctive structures combined with characteristic shelf physiography define eight ‘Stromatolite Provinces’. Morphological and molecular studies of microbial mat composition resulted in a revised growth model where coccoid cyanobacteria predominate in mat communities forming lithified discrete stromatolite buildups. This contradicts traditional views that stromatolites with the best lamination in Hamelin Pool are formed by filamentous cyanobacterial mats. Finally, analysis of internal fabrics of stromatolites revealed pervasive precipitation of microcrystalline carbonate (i.e. micrite) in microbial mats forming framework and cement that may be analogous to the micritic microstructures typical of Precambrian stromatolites. These discoveries represent fundamental advances in our knowledge of the Shark Bay microbial system, laying a foundation for detailed studies of stromatolite morphogenesis that will advance our understanding of benthic ecosystems on the early Earth
    corecore