1,722 research outputs found

    Effect of egg turning and incubation time on carbonic anhydrase gene expression in the blastoderm of the Japanese quail (Coturnix c. japonica)

    Get PDF
    (1) The gene expression of carbonic anhydrase, a key enzyme for the production sub-embryonic fluid (SEF), was assessed in turned and unturned eggs of the Japanese quail. The plasma membrane-associated isoforms CA IV, CAIX, CA XII, CA XIV, and the cytoplasmic isoform CA II, were investigated in the extra-embryonic tissue of the blastoderm and in embryonic blood. (2) Eggs were incubated at 37.6C, c. 60% R.H., and turned hourly (90 ) or left unturned. From 48 to 96 hours of incubation mRNA was extracted from blastoderm tissue, reverse-transcribed to cDNA and quantified by real-time qPCR using gene-specific primers. Blood collected at 96h was processed identically. (3) Blastoderm CAIV gene expression increased with the period of incubation only in turned eggs, with maxima at 84 and 96h of incubation. Only very low levels were found in blood. (4) Blastoderm CA II gene expression was greatest at 48 and 54h of incubation, subsequently declining to much lower levels and una ected by turning. Blood CA II gene expression was about 25-fold greater than that in the blastoderm. (5) The expression of CA IX in the blastoderm was the highest of all isoforms, yet unaffected by turning. CA XII did not amplify and CA XIV was present at unquantifiable low levels. (6) It is concluded that solely gene expression for CA IV is sensitive to egg turning, and that increased CA IV gene expression could account for the additional SEF mass found at 84-96h of incubation. in embryos of turned eggs

    Two attacks on rank metric code-based schemes: RankSign and an Identity-Based-Encryption scheme

    Get PDF
    RankSign [GRSZ14a] is a code-based signature scheme proposed to the NIST competition for quantum-safe cryptography [AGHRZ17] and, moreover, is a fundamental building block of a new Identity-Based-Encryption (IBE) [GHPT17a]. This signature scheme is based on the rank metric and enjoys remarkably small key sizes, about 10KBytes for an intended level of security of 128 bits. Unfortunately we will show that all the parameters proposed for this scheme in [AGHRZ17] can be broken by an algebraic attack that exploits the fact that the augmented LRPC codes used in this scheme have very low weight codewords. Therefore, without RankSign the IBE cannot be instantiated at this time. As a second contribution we will show that the problem is deeper than finding a new signature in rank-based cryptography, we also found an attack on the generic problem upon which its security reduction relies. However, contrarily to the RankSign scheme, it seems that the parameters of the IBE scheme could be chosen in order to avoid our attack. Finally, we have also shown that if one replaces the rank metric in the [GHPT17a] IBE scheme by the Hamming metric, then a devastating attack can be found

    R-process enrichment from a single event in an ancient dwarf galaxy

    Get PDF
    Elements heavier than zinc are synthesized through the (r)apid and (s)low neutron-capture processes. The main site of production of the r-process elements (such as europium) has been debated for nearly 60 years. Initial studies of chemical abundance trends in old Milky Way halo stars suggested continual r-process production, in sites like core-collapse supernovae. But evidence from the local Universe favors r-process production mainly during rare events, such as neutron star mergers. The appearance of a europium abundance plateau in some dwarf spheroidal galaxies has been suggested as evidence for rare r-process enrichment in the early Universe, but only under the assumption of no gas accretion into the dwarf galaxies. Cosmologically motivated gas accretion favors continual r-process enrichment in these systems. Furthermore, the universal r-process pattern has not been cleanly identified in dwarf spheroidals. The smaller, chemically simpler, and more ancient ultra-faint dwarf galaxies assembled shortly after the first stars formed, and are ideal systems with which to study nucleosynthesis events such as the r-process. Reticulum II is one such galaxy. The abundances of non-neutron-capture elements in this galaxy (and others like it) are similar to those of other old stars. Here, we report that seven of nine stars in Reticulum II observed with high-resolution spectroscopy show strong enhancements in heavy neutron-capture elements, with abundances that follow the universal r-process pattern above barium. The enhancement in this "r-process galaxy" is 2-3 orders of magnitude higher than that detected in any other ultra-faint dwarf galaxy. This implies that a single rare event produced the r-process material in Reticulum II. The r-process yield and event rate are incompatible with ordinary core-collapse supernovae, but consistent with other possible sites, such as neutron star mergers.Comment: Published in Nature, 21 Mar 2016: http://dx.doi.org/10.1038/nature1742

    Expressed sequence tag analysis of adult human optic nerve for NEIBank: Identification of cell type and tissue markers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The optic nerve is a pure white matter central nervous system (CNS) tract with an isolated blood supply, and is widely used in physiological studies of white matter response to various insults. We examined the gene expression profile of human optic nerve (ON) and, through the NEIBANK online resource, to provide a resource of sequenced verified cDNA clones. An un-normalized cDNA library was constructed from pooled human ON tissues and was used in expressed sequence tag (EST) analysis. Location of an abundant oligodendrocyte marker was examined by immunofluorescence. Quantitative real time polymerase chain reaction (qRT-PCR) and Western analysis were used to compare levels of expression for key calcium channel protein genes and protein product in primate and rodent ON.</p> <p>Results</p> <p>Our analyses revealed a profile similar in many respects to other white matter related tissues, but significantly different from previously available ON cDNA libraries. The previous libraries were found to include specific markers for other eye tissues, suggesting contamination. Immune/inflammatory markers were abundant in the new ON library. The oligodendrocyte marker QKI was abundant at the EST level. Immunofluorescence revealed that this protein is a useful oligodendrocyte cell-type marker in rodent and primate ONs. L-type calcium channel EST abundance was found to be particularly low. A qRT-PCR-based comparative mammalian species analysis reveals that L-type calcium channel expression levels are significantly lower in primate than in rodent ON, which may help account for the class-specific difference in responsiveness to calcium channel blocking agents. Several known eye disease genes are abundantly expressed in ON. Many genes associated with normal axonal function, mRNAs associated with axonal transport, inflammation and neuroprotection are observed.</p> <p>Conclusion</p> <p>We conclude that the new cDNA library is a faithful representation of human ON and EST data provide an initial overview of gene expression patterns in this tissue. The data provide clues for tissue-specific and species-specific properties of human ON that will help in design of therapeutic models.</p

    Re-assessing the validity of the Moral Sensitivity Questionnaire (MSQ):Two new scales for moral deliberation and paternalism

    Get PDF
    RATIONALE, AIMS, AND OBJECTIVES: The current study and previous research have called the six-component model of Lützen's 30-item Moral Sensitivity Questionnaire (MSQ) into question. For this reason, we re-examined the construct validity of this instrument. METHODS: In this cross-sectional study, which was based on a convenience sample of Dutch nurse practitioners (NPs) and physician assistants (PAs), we tested the validity of MSQ items using exploratory and confirmatory factor analyses (EFA and CFA, respectively). RESULTS: The EFA revealed a two-component model, which was then tested as a target model with CFA and was found to have good model fit. Some items were correlated with two uncorrelated latent constructs, which we labelled as "paternalistic" and "deliberate" attitudes towards patients. CONCLUSIONS: As in previous studies, the analyses in the current study, which was conducted among PAs and NPs, did not reveal six dimensions for the 30 items. Two new latent dimensions of moral sensitivity were psychometrically tested and confirmed. These two components relate to studies investigating ethical behaviour, and they can be used to describe the moral climate in healthcare organizations. The scales are indicators of the extent to which health professionals behave in a deliberate (sensitive) or paternalistic (insensitive) manner towards the opinions of patients within the context of medical decision-making

    An IND-CCA-Secure Code-Based EncryptionScheme Using Rank Metric

    Get PDF
    The use of rank instead of Hamming metric has been proposed to address the main drawback of code-based cryptography: large key sizes. There exist several Key Encapsulation Mechanisms (KEM) and Public Key Encryption (PKE) schemes using rank metric including some submissions to the NIST call for standardization of Post-Quantum Cryptography. In this work, we present an IND-CCA PKE scheme based on the McEliece adaptation to rank metric proposed by Loidreau at PQC 2017. This IND-CCA PKE scheme based on rank metric does not use a hybrid construction KEM + symmetric encryption. Instead, we take advantage of the bigger message space obtained by the different parameters chosen in rank metric, being able to exchange multiple keys in one ciphertext. Our proposal is designed considering some specific properties of the random error generated during the encryption. We prove our proposal IND-CCA-secure in the QROM by using a security notion called disjoint simulatability introduced by Saito et al. in Eurocrypt 2018. Moreover, we provide security bounds by using the semi-oracles introduced by Ambainis et al

    The formation of professional identity in medical students: considerations for educators

    Get PDF
    &lt;b&gt;Context&lt;/b&gt; Medical education is about more than acquiring an appropriate level of knowledge and developing relevant skills. To practice medicine students need to develop a professional identity – ways of being and relating in professional contexts.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Objectives&lt;/b&gt; This article conceptualises the processes underlying the formation and maintenance of medical students’ professional identity drawing on concepts from social psychology.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Implications&lt;/b&gt; A multi-dimensional model of identity and identity formation, along with the concepts of identity capital and multiple identities, are presented. The implications for educators are discussed.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Conclusions&lt;/b&gt; Identity formation is mainly social and relational in nature. Educators, and the wider medical society, need to utilise and maximise the opportunities that exist in the various relational settings students experience. Education in its broadest sense is about the transformation of the self into new ways of thinking and relating. Helping students form, and successfully integrate their professional selves into their multiple identities, is a fundamental of medical education

    Easy detection of chromatin binding proteins by the histone association assay

    Get PDF
    The Histone Association Assay provides an easy approach for detecting proteins that bind chromatin in vivo. This technique is based on a chromatin immunoprecipitation protocol using histone H3-specific antibodies to precipitate bulk chromatin from crosslinked whole cell extracts. Proteins that co-precipitate with chromatin are subsequently detected by conventional SDS-PAGE and Western blot analysis. Unlike techniques that separate chromatin and non-chromatin interacting proteins by centrifugation, this method can be used to delineate whether a protein is chromatin associated regardless of its innate solubility. Moreover, the relative amount of protein bound to DNA can be ascertained under quantitative conditions. Therefore, this technique may be utilized for analyzing the chromatin association of proteins involved in diverse cellular processes

    Mapping Dynamic Histone Acetylation Patterns to Gene Expression in Nanog-depleted Murine Embryonic Stem Cells

    Get PDF
    Embryonic stem cells (ESC) have the potential to self-renew indefinitely and to differentiate into any of the three germ layers. The molecular mechanisms for self-renewal, maintenance of pluripotency and lineage specification are poorly understood, but recent results point to a key role for epigenetic mechanisms. In this study, we focus on quantifying the impact of histone 3 acetylation (H3K9,14ac) on gene expression in murine embryonic stem cells. We analyze genome-wide histone acetylation patterns and gene expression profiles measured over the first five days of cell differentiation triggered by silencing Nanog, a key transcription factor in ESC regulation. We explore the temporal and spatial dynamics of histone acetylation data and its correlation with gene expression using supervised and unsupervised statistical models. On a genome-wide scale, changes in acetylation are significantly correlated to changes in mRNA expression and, surprisingly, this coherence increases over time. We quantify the predictive power of histone acetylation for gene expression changes in a balanced cross-validation procedure. In an in-depth study we focus on genes central to the regulatory network of Mouse ESC, including those identified in a recent genome-wide RNAi screen and in the PluriNet, a computationally derived stem cell signature. We find that compared to the rest of the genome, ESC-specific genes show significantly more acetylation signal and a much stronger decrease in acetylation over time, which is often not reflected in an concordant expression change. These results shed light on the complexity of the relationship between histone acetylation and gene expression and are a step forward to dissect the multilayer regulatory mechanisms that determine stem cell fate.Comment: accepted at PLoS Computational Biolog

    A Genome-Wide Analysis of Promoter-Mediated Phenotypic Noise in Escherichia coli

    Get PDF
    Gene expression is subject to random perturbations that lead to fluctuations in the rate of protein production. As a consequence, for any given protein, genetically identical organisms living in a constant environment will contain different amounts of that particular protein, resulting in different phenotypes. This phenomenon is known as “phenotypic noise.” In bacterial systems, previous studies have shown that, for specific genes, both transcriptional and translational processes affect phenotypic noise. Here, we focus on how the promoter regions of genes affect noise and ask whether levels of promoter-mediated noise are correlated with genes' functional attributes, using data for over 60% of all promoters in Escherichia coli. We find that essential genes and genes with a high degree of evolutionary conservation have promoters that confer low levels of noise. We also find that the level of noise cannot be attributed to the evolutionary time that different genes have spent in the genome of E. coli. In contrast to previous results in eukaryotes, we find no association between promoter-mediated noise and gene expression plasticity. These results are consistent with the hypothesis that, in bacteria, natural selection can act to reduce gene expression noise and that some of this noise is controlled through the sequence of the promoter region alon
    corecore