47 research outputs found
Coordinated optimization of visual cortical maps (II) Numerical studies
It is an attractive hypothesis that the spatial structure of visual cortical
architecture can be explained by the coordinated optimization of multiple
visual cortical maps representing orientation preference (OP), ocular dominance
(OD), spatial frequency, or direction preference. In part (I) of this study we
defined a class of analytically tractable coordinated optimization models and
solved representative examples in which a spatially complex organization of the
orientation preference map is induced by inter-map interactions. We found that
attractor solutions near symmetry breaking threshold predict a highly ordered
map layout and require a substantial OD bias for OP pinwheel stabilization.
Here we examine in numerical simulations whether such models exhibit
biologically more realistic spatially irregular solutions at a finite distance
from threshold and when transients towards attractor states are considered. We
also examine whether model behavior qualitatively changes when the spatial
periodicities of the two maps are detuned and when considering more than 2
feature dimensions. Our numerical results support the view that neither minimal
energy states nor intermediate transient states of our coordinated optimization
models successfully explain the spatially irregular architecture of the visual
cortex. We discuss several alternative scenarios and additional factors that
may improve the agreement between model solutions and biological observations.Comment: 55 pages, 11 figures. arXiv admin note: substantial text overlap with
arXiv:1102.335
Development of the Synarcual in the Elephant Sharks (Holocephali; Chondrichthyes): Implications for Vertebral Formation and Fusion
The synarcual is a structure incorporating multiple elements of two or more anterior vertebrae of the axial skeleton, forming immediately posterior to the cranium. It has been convergently acquired in the fossil group βPlacodermiβ, in Chondrichthyes (Holocephali, Batoidea), within the teleost group Syngnathiformes, and to varying degrees in a range of mammalian taxa. In addition, cervical vertebral fusion presents as an abnormal pathology in a variety of human disorders. Vertebrae develop from axially arranged somites, so that fusion could result from a failure of somite segmentation early in development, or from later heterotopic development of intervertebral bone or cartilage. Examination of early developmental stages indicates that in the Batoidea and the βPlacodermiβ, individual vertebrae developed normally and only later become incorporated into the synarcual, implying regular somite segmenta- tion and vertebral development. Here we show that in the holocephalan Callorhinchus milii, uniform and regular vertebral segmentation also occurs, with anterior individual vertebra developing separately with subsequent fusion into a synarcual. Vertebral elements forming directly behind the synarcual continue to be incorporated into the synarcual through growth. This appears to be a common pattern through the Vertebrata. Research into human disor- ders, presenting as cervical fusion at birth, focuses on gene misexpression studies in humans and other mammals such as the mouse. However, in chondrichthyans, vertebral fusion represents the normal morphology, moreover, taxa such Leucoraja (Batoidea) and Callorhinchus (Holocephali) are increasingly used as laboratory animals, and the Callor- hinchus genome has been sequenced and is available for study. Our observations on synarcual development in three major groups of early jawed vertebrates indicate that fusion involves heterotopic cartilage and perichondral bone/mineralised cartilage developing outside the regular skeleton. We suggest that chondrichthyans have potential as ideal extant models for identifying the genes involved in these processes, for application to human skeletal heterotopic disorders
Screening for multi-drug-resistant Gram-negative bacteria: what is effective and justifiable?
Effectiveness is a key criterion in assessing the justification of antibiotic resistance interventions. Depending on an intervention's effectiveness, burdens and costs will be more or less justified, which is especially important for large scale population-level interventions with high running costs and pronounced risks to individuals in terms of wellbeing, integrity and autonomy. In this paper, we assess the case of routine hospital screening for multi-drug-resistant Gram-negative bacteria (MDRGN) from this perspective. Utilizing a comparison to screening programs for Methicillin-Resistant Staphylococcus aureus (MRSA) we argue that current screening programmes for MDRGN in low endemic settings should be reconsidered, as its effectiveness is in doubt, while general downsides to screening programs remain. To accomplish justifiable antibiotic stewardship, MDRGN screening should not be viewed as a separate measure, but rather as part of a comprehensive approach. The program should be redesigned to focus on those at risk of developing symptomatic infections with MDRGN rather than merely detecting those colonised
Conserved Genes Act as Modifiers of Invertebrate SMN Loss of Function Defects
Spinal Muscular Atrophy (SMA) is caused by diminished function of the Survival of Motor Neuron (SMN) protein, but the molecular pathways critical for SMA pathology remain elusive. We have used genetic approaches in invertebrate models to identify conserved SMN loss of function modifier genes. Drosophila melanogaster and Caenorhabditis elegans each have a single gene encoding a protein orthologous to human SMN; diminished function of these invertebrate genes causes lethality and neuromuscular defects. To find genes that modulate SMN function defects across species, two approaches were used. First, a genome-wide RNAi screen for C. elegans SMN modifier genes was undertaken, yielding four genes. Second, we tested the conservation of modifier gene function across species; genes identified in one invertebrate model were tested for function in the other invertebrate model. Drosophila orthologs of two genes, which were identified originally in C. elegans, modified Drosophila SMN loss of function defects. C. elegans orthologs of twelve genes, which were originally identified in a previous Drosophila screen, modified C. elegans SMN loss of function defects. Bioinformatic analysis of the conserved, cross-species, modifier genes suggests that conserved cellular pathways, specifically endocytosis and mRNA regulation, act as critical genetic modifiers of SMN loss of function defects across species
Over-expression of TATA binding protein (TBP) and p53 and autoantibodies to these antigens are features of systemic sclerosis, systemic lupus erythematosus and overlap syndromes
The aim of this study was to determine the expression levels of p53 and TATA binding protein (TBP) and the presence of autoantibodies to these antigens in Asian Indian patients with systemic sclerosis (SSc), overlap syndromes (OS) and systemic lupus erythematosus (SLE). Fifty patients with SSc, 20 with OS, including mixed connective tissue diseases (MCTD), 20 with SLE, 10 disease controls (DC) and 25 controls (C) were studied. The over-expression of p53 and TBP antigen was determined quantitatively by sandwich enzyme-linked immunosorbent assay (ELISA), varies between four- and sevenfold higher in patients with SSc, OS and SLE, in comparison to DC and C. The expressed protein antigens were not present as free antigens but as immune-complexes. Autoantibodies to p53 were detected by ELISA in 78% subjects with SSc, 100% with OS and 80% with SLE. Autoantibodies to TBP were observed in 28% patients with SSc, 25% with OS and 15% with SLE. In comparison to healthy controls, the titre of antibodies to p53 was significantly higher in patients with SSc (P = 0Β·00001) than the patients with OS (P = 0Β·00279) and SLE (P = 0Β·00289), whereas the titre of antibodies to TBP was higher in patients with OS (P = 0Β·00185) than the SLE (P = 0Β·00673) and the SSc (P = 0Β·00986) patients. Autoantibodies to p53 and TBP were detected in all these patients and the levels of these two autoantibodies showed weak negative correlation with each other. We propose that the over-expression of these antigens might be due to hyperactive regulatory regions in the p53 and TBP gene