10 research outputs found

    Cardiovascular Magnetic Resonance in Marfan syndrome

    Full text link

    Haemodynamic Issues with Transcatheter Aortic Valve Implantation

    Get PDF
    Transcatheter aortic valves are typically implanted inside the native (or failed bioprosthetic’s) leaflets, permanently forcing the old leaflets open into a pseudo-cylindrical condition. Due to the passive nature of heart valves, the dynamics of the surrounding fluid environment is critical to their optimum performance. Following intervention, the haemodynamics of the region would ideally be returned to their healthy, physiological state, but major alterations are currently inevitable, such as increased peak flow velocity, the presence of stagnation regions, and increased haemolytic fluid environments. These leaflets reduce the volume of and restrict the flow into the Valsalva’s sinuses, and minimise the development of vortices and associated flow structures, which would aid washout and valve closure. Despite these differences to the healthy condition, implantation of these devices offers much improved flow from that of a moderately stenotic valve, with reduced transvalvular systolic pressure drop, peak blood velocity, and shear stress, which normally outweighs the disadvantages highlighted above, especially for high-risk patients

    Review of Molecular and Mechanical Interactions in the Aortic Valve and Aorta: Implications for the Shared Pathogenesis of Aortic Valve Disease and Aortopathy

    No full text
    corecore