1,810 research outputs found
Taking a hard line with biotemplating: cobalt-doped magnetite magnetic nanoparticle arrays.
Rapid advancements made in technology, and the drive towards miniaturisation, means that we require reliable, sustainable and cost effective methods of manufacturing a wide range of nanomaterials. In this bioinspired study, we take advantage of millions of years of evolution, and adapt a biomineralisation protein for surface patterning of biotemplated magnetic nanoparticles (MNPs). We employ soft-lithographic micro-contact printing to pattern a recombinant version of the biomineralisation protein Mms6 (derived from the magnetotactic bacterium Magnetospirillum magneticum AMB-1). The Mms6 attaches to gold surfaces via a cysteine residue introduced into the N-terminal region. The surface bound protein biotemplates highly uniform MNPs of magnetite onto patterned surfaces during an aqueous mineralisation reaction (with a mean diameter of 90 ± 15 nm). The simple addition of 6% cobalt to the mineralisation reaction maintains the uniformity in grain size (with a mean diameter of 84 ± 14 nm), and results in the production of MNPs with a much higher coercivity (increased from â156 Oe to â377 Oe). Biotemplating magnetic nanoparticles on patterned surfaces could form a novel, environmentally friendly route for the production of bit-patterned media, potentially the next generation of ultra-high density magnetic data storage devices. This is a simple method to fine-tune the magnetic hardness of the surface biotemplated MNPs, and could easily be adapted to biotemplate a wide range of different nanomaterials on surfaces to create a range of biologically templated devices
Observation of an Excited Bc+ State
Using pp collision data corresponding to an integrated luminosity of 8.5 fb-1 recorded by the LHCb experiment at center-of-mass energies of s=7, 8, and 13 TeV, the observation of an excited Bc+ state in the Bc+Ï+Ï- invariant-mass spectrum is reported. The observed peak has a mass of 6841.2±0.6(stat)±0.1(syst)±0.8(Bc+) MeV/c2, where the last uncertainty is due to the limited knowledge of the Bc+ mass. It is consistent with expectations of the Bcâ(2S31)+ state reconstructed without the low-energy photon from the Bcâ(1S31)+âBc+Îł decay following Bcâ(2S31)+âBcâ(1S31)+Ï+Ï-. A second state is seen with a global (local) statistical significance of 2.2Ï (3.2Ï) and a mass of 6872.1±1.3(stat)±0.1(syst)±0.8(Bc+) MeV/c2, and is consistent with the Bc(2S10)+ state. These mass measurements are the most precise to date
A novel design strategy for nanoparticles on nanopatterns: interferometric lithographic patterning of Mms6 biotemplated magnetic nanoparticles
Nanotechnology demands the synthesis of highly precise, functional materials, tailored for specific applications. One such example is bit patterned media. These high-density magnetic data-storage materials require specific and uniform magnetic nanoparticles (MNPs) to be patterned over large areas (cm2 range) in exact nanoscale arrays. However, the realisation of such materials for nanotechnology applications depends upon reproducible fabrication methods that are both precise and environmentally-friendly, for cost-effective scale-up. A potentially ideal biological fabrication methodology is biomineralisation. This is the formation of inorganic minerals within organisms, and is known to be highly controlled down to the nanoscale whilst being carried out under ambient conditions. The magnetotactic bacterium Magnetospirillum magneticum AMB-1 uses a suite of dedicated biomineralisation proteins to control the formation of magnetite MNPs within their cell. One of these proteins, Mms6, has been shown to control formation of magnetite MNPs in vitro. We have previously used Mms6 on micro-contact printed (ΌCP) patterned self-assembled monolayer (SAM) surfaces to control the formation and location of MNPs in microscale arrays, offering a bioinspired and green-route to fabrication. However, ΌCP cannot produce patterns reliably with nanoscale dimensions, and most alternative nanofabrication techniques are slow and expensive. Interferometric lithography (IL) uses the interference of laser light to produce nanostructures over large areas via a simple process implemented under ambient conditions. Here we combine the bottom-up biomediated approach with a top down IL methodology to produce arrays of uniform magnetite MNPs (86 ± 21 nm) with a period of 357 nm. This shows a potentially revolutionary strategy for the production of magnetic arrays with nanoscale precision in a process with low environmental impact, which could be scaled readily to facilitate large-scale production of nanopatterned surface materials for technological applications
Clinical chronobiology: a timely consideration in critical care medicine
A fundamental aspect of human physiology is its cyclical nature over a 24-h period, a feature conserved across most life on Earth. Organisms compartmentalise processes with respect to time in order to promote survival, in a manner that mirrors the rotation of the planet and accompanying diurnal cycles of light and darkness. The influence of circadian rhythms can no longer be overlooked in clinical settings; this review provides intensivists with an up-to-date understanding of the burgeoning field of chronobiology, and suggests ways to incorporate these concepts into daily practice to improve patient outcomes. We outline the function of molecular clocks in remote tissues, which adjust cellular and global physiological function according to the time of day, and the potential clinical advantages to keeping in time with them. We highlight the consequences of "chronopathology", when this harmony is lost, and the risk factors for this condition in critically ill patients. We introduce the concept of "chronofitness" as a new target in the treatment of critical illness: preserving the internal synchronisation of clocks in different tissues, as well as external synchronisation with the environment. We describe methods for monitoring circadian rhythms in a clinical setting, and how this technology may be used for identifying optimal time windows for interventions, or to alert the physician to a critical deterioration of circadian rhythmicity. We suggest a chronobiological approach to critical illness, involving multicomponent strategies to promote chronofitness (chronobundles), and further investment in the development of personalised, time-based treatment for critically ill patients
Observation of B(s)0âJ/ÏppÂŻ decays and precision measurements of the B(s)0 masses
The first observation of the decays
B
0
(
s
)
â
J
/
Ï
p
ÂŻ
p
is reported, using proton-proton collision data corresponding to an integrated luminosity of
5.2
â
â
fb
â
1
, collected with the LHCb detector. These decays are suppressed due to limited available phase space, as well as due to Okubo-Zweig-Iizuka or Cabibbo suppression. The measured branching fractions are
B
(
B
0
â
J
/
Ï
p
ÂŻ
p
)
=
[
4.51
±
0.40
(
stat
)
±
0.44
(
syst
)
]
Ă
10
â
7
,
B
(
B
0
s
â
J
/
Ï
p
ÂŻ
p
)
=
[
3.58
±
0.19
(
stat
)
±
0.39
(
syst
)
]
Ă
10
â
6
. For the
B
0
s
meson, the result is much higher than the expected value of
O
(
10
â
9
)
. The small available phase space in these decays also allows for the most precise single measurement of both the
B
0
mass as
5279.74
±
0.30
(
stat
)
±
0.10
(
syst
)
â
â
MeV
and the
B
0
s
mass as
5366.85
±
0.19
(
stat
)
±
0.13
(
syst
)
â
â
MeV
Measurement of the Charm-Mixing Parameter yCP
A measurement of the charm-mixing parameter y_{CP} using D^{0}âK^{+}K^{-}, D^{0}âÏ^{+}Ï^{-}, and D^{0}âK^{-}Ï^{+} decays is reported. The D^{0} mesons are required to originate from semimuonic decays of B^{-} and B[over ÂŻ]^{0} mesons. These decays are partially reconstructed in a data set of proton-proton collisions at center-of-mass energies of 7 and 8 TeV collected with the LHCb experiment and corresponding to an integrated luminosity of 3ââfb^{-1}. The y_{CP} parameter is measured to be (0.57±0.13(stat)±0.09(syst))%, in agreement with, and as precise as, the current world-average value
Measurement of b hadron fractions in 13 TeV pp collisions
The production fractions of
ÂŻ
B
0
s
and
Î
0
b
hadrons, normalized to the sum of
B
â
and
ÂŻ
B
0
fractions, are measured in 13 TeV
p
p
collisions using data collected by the LHCb experiment, corresponding to an integrated luminosity of
1.67
â
â
fb
â
1
. These ratios, averaged over the
b
hadron transverse momenta from 4 to 25 GeV and pseudorapidity from 2 to 5, are
0.122
±
0.006
for
ÂŻ
B
0
s
, and
0.259
±
0.018
for
Î
0
b
, where the uncertainties arise from both statistical and systematic sources. The
Î
0
b
ratio depends strongly on transverse momentum, while the
ÂŻ
B
0
s
ratio shows a mild dependence. Neither ratio shows variations with pseudorapidity. The measurements are made using semileptonic decays to minimize theoretical uncertainties. In addition, the ratio of
D
+
to
D
0
mesons produced in the sum of
ÂŻ
B
0
and
B
â
semileptonic decays is determined as
0.359
±
0.006
±
0.009
, where the uncertainties are statistical and systematic
Search for violation through an amplitude analysis of decays
International audienceA search for CP violation in the Cabibbo-suppressed D â KKÏÏ decay mode is performed using an amplitude analysis. The measurement uses a sample of pp collisions recorded by the LHCb experiment during 2011 and 2012, corresponding to an integrated luminosity of 3.0 fb. The D mesons are reconstructed from semileptonic b-hadron decays into DÎŒX final states. The selected sample contains more than 160 000 signal decays, allowing the most precise amplitude modelling of this D decay to date. The obtained amplitude model is used to perform the search for CP violation. The result is compatible with CP symmetry, with a sensitivity ranging from 1% to 15% depending on the amplitude considered
Observation of the decay Î <sub>b</sub> <sup>0</sup> âââÏ(2S)pÏ<sup>â</sup>
International audienceThe Cabibbo-suppressed decay Î âââÏ(2S)pÏ is observed for the first time using a data sample collected by the LHCb experiment in proton-proton collisions corresponding to 1.0, 2.0 and 1.9 fb of integrated luminosity at centre-of-mass energies of 7, 8 and 13 TeV, respectively. The Ï(2S) mesons are reconstructed in the ΌΌ final state. The branching fraction with respect to that of the Î âââÏ(2S)pK decay mode is measured to b
- âŠ