8,590 research outputs found

    Inclusive Jet Cross Sections in pbarp Collisions at 630 and 1800 GeV

    Full text link
    We have made a precise measurement of the inclusive jet cross section at 1800 GeV. The result is based on an integrated luminosity of 92 pb**-1 collected at the Fermilab Tevatron pbarp Collider with the DO detector. The measurement is reported as a function of jet transverse energy (60 GeV < ET < 500 GeV), and in the pseudorapidity intervals |eta|<0.5 and 0.1<eta<0.7. A preliminary measurement of the pseudorapidity dependence of inclusive jet production (eta<1.5) is also discussed. The results are in good agreement with predictions from next-to-leading order (NLO) quantum chromodynamics (QCD). D\O has also determined the ratio of jet cross sections at s\sqrt{s}=630 GeV and s\sqrt{s}=1800 GeV (∣η∣≤0.5|\eta|\leq 0.5). This preliminary measurement differs from NLO QCD predictions.Comment: 3 pages, 3 figures, conference (DIS99, Zeuthen, Germany

    QCD at the Tevatron: Jets and Fragmentation

    Get PDF
    At the Fermilab Tevatron energies, (s\sqrt{s}=1800 GeV and s\sqrt{s}=630 GeV), jet production is the dominant process. During the period 1992-1996, the D0 and CDF experiments accumulated almost 100 pb**-1 of data and performed the most accurate jet production measurements up to this date. These measurements and the NLO-QCD theoretical predictions calculated during the last decade, have improved our understanding of QCD, our knowledge of the proton structure, and pushed the limit to the scale associated with quark compositeness to 2.4-2.7 TeV. In this paper, we present the most recent published and preliminary measurements on jet production and fragmentation by the D0 and CDF collaborations.Comment: 11 pages, 16 figures, Physics in Collisions Conference 2000 (Lisbon, Portugal

    Effective Sample Size for Importance Sampling based on discrepancy measures

    Full text link
    The Effective Sample Size (ESS) is an important measure of efficiency of Monte Carlo methods such as Markov Chain Monte Carlo (MCMC) and Importance Sampling (IS) techniques. In the IS context, an approximation ESS^\widehat{ESS} of the theoretical ESS definition is widely applied, involving the inverse of the sum of the squares of the normalized importance weights. This formula, ESS^\widehat{ESS}, has become an essential piece within Sequential Monte Carlo (SMC) methods, to assess the convenience of a resampling step. From another perspective, the expression ESS^\widehat{ESS} is related to the Euclidean distance between the probability mass described by the normalized weights and the discrete uniform probability mass function (pmf). In this work, we derive other possible ESS functions based on different discrepancy measures between these two pmfs. Several examples are provided involving, for instance, the geometric mean of the weights, the discrete entropy (including theperplexity measure, already proposed in literature) and the Gini coefficient among others. We list five theoretical requirements which a generic ESS function should satisfy, allowing us to classify different ESS measures. We also compare the most promising ones by means of numerical simulations

    Group Importance Sampling for Particle Filtering and MCMC

    Full text link
    Bayesian methods and their implementations by means of sophisticated Monte Carlo techniques have become very popular in signal processing over the last years. Importance Sampling (IS) is a well-known Monte Carlo technique that approximates integrals involving a posterior distribution by means of weighted samples. In this work, we study the assignation of a single weighted sample which compresses the information contained in a population of weighted samples. Part of the theory that we present as Group Importance Sampling (GIS) has been employed implicitly in different works in the literature. The provided analysis yields several theoretical and practical consequences. For instance, we discuss the application of GIS into the Sequential Importance Resampling framework and show that Independent Multiple Try Metropolis schemes can be interpreted as a standard Metropolis-Hastings algorithm, following the GIS approach. We also introduce two novel Markov Chain Monte Carlo (MCMC) techniques based on GIS. The first one, named Group Metropolis Sampling method, produces a Markov chain of sets of weighted samples. All these sets are then employed for obtaining a unique global estimator. The second one is the Distributed Particle Metropolis-Hastings technique, where different parallel particle filters are jointly used to drive an MCMC algorithm. Different resampled trajectories are compared and then tested with a proper acceptance probability. The novel schemes are tested in different numerical experiments such as learning the hyperparameters of Gaussian Processes, two localization problems in a wireless sensor network (with synthetic and real data) and the tracking of vegetation parameters given satellite observations, where they are compared with several benchmark Monte Carlo techniques. Three illustrative Matlab demos are also provided.Comment: To appear in Digital Signal Processing. Related Matlab demos are provided at https://github.com/lukafree/GIS.gi

    Parallel Metropolis chains with cooperative adaptation

    Get PDF
    Monte Carlo methods, such as Markov chain Monte Carlo (MCMC) algorithms, have become very popular in signal processing over the last years. In this work, we introduce a novel MCMC scheme where parallel MCMC chains interact, adapting cooperatively the parameters of their proposal functions. Furthermore, the novel algorithm distributes the computational effort adaptively, rewarding the chains which are providing better performance and, possibly even stopping other ones. These extinct chains can be reactivated if the algorithm considers necessary. Numerical simulations shows the benefits of the novel scheme

    Orthogonal parallel MCMC methods for sampling and optimization

    Full text link
    Monte Carlo (MC) methods are widely used for Bayesian inference and optimization in statistics, signal processing and machine learning. A well-known class of MC methods are Markov Chain Monte Carlo (MCMC) algorithms. In order to foster better exploration of the state space, specially in high-dimensional applications, several schemes employing multiple parallel MCMC chains have been recently introduced. In this work, we describe a novel parallel interacting MCMC scheme, called {\it orthogonal MCMC} (O-MCMC), where a set of "vertical" parallel MCMC chains share information using some "horizontal" MCMC techniques working on the entire population of current states. More specifically, the vertical chains are led by random-walk proposals, whereas the horizontal MCMC techniques employ independent proposals, thus allowing an efficient combination of global exploration and local approximation. The interaction is contained in these horizontal iterations. Within the analysis of different implementations of O-MCMC, novel schemes in order to reduce the overall computational cost of parallel multiple try Metropolis (MTM) chains are also presented. Furthermore, a modified version of O-MCMC for optimization is provided by considering parallel simulated annealing (SA) algorithms. Numerical results show the advantages of the proposed sampling scheme in terms of efficiency in the estimation, as well as robustness in terms of independence with respect to initial values and the choice of the parameters

    A generic framework for the analysis and specialization of logic programs

    Get PDF
    The relationship between abstract interpretation and partial deduction has received considerable attention and (partial) integrations have been proposed starting from both the partial deduction and abstract interpretation perspectives. In this work we present what we argüe is the first fully described generic algorithm for efñcient and precise integration of abstract interpretation and partial deduction. Taking as starting point state-of-the-art algorithms for context-sensitive, polyvariant abstract interpretation and (abstract) partial deduction, we present an algorithm which combines the best of both worlds. Key ingredients include the accurate success propagation inherent to abstract interpretation and the powerful program transformations achievable by partial deduction. In our algorithm, the calis which appear in the analysis graph are not analyzed w.r.t. the original definition of the procedure but w.r.t. specialized definitions of these procedures. Such specialized definitions are obtained by applying both unfolding and abstract executability. Our framework is parametric w.r.t. different control strategies and abstract domains. Different combinations of such parameters correspond to existing algorithms for program analysis and specialization. Simultaneously, our approach opens the door to the efñcient computation of strictly more precise results than those achievable by each of the individual techniques. The algorithm is now one of the key components of the CiaoPP analysis and specialization system

    Abstract Interpretation-based verification/certification in the ciaoPP system

    Get PDF
    CiaoPP is the abstract interpretation-based preprocessor of the Ciao multi-paradigm (Constraint) Logic Programming system. It uses modular, incremental abstract interpretation as a fundamental tool to obtain information about programs. In CiaoPP, the semantic approximations thus produced have been applied to perform high- and low-level optimizations during program compilation, including transformations such as múltiple abstract specialization, parallelization, partial evaluation, resource usage control, and program verification. More recently, novel and promising applications of such semantic approximations are being applied in the more general context of program development such as program verification. In this work, we describe our extensión of the system to incorpórate Abstraction-Carrying Code (ACC), a novel approach to mobile code safety. ACC follows the standard strategy of associating safety certificates to programs, originally proposed in Proof Carrying- Code. A distinguishing feature of ACC is that we use an abstraction (or abstract model) of the program computed by standard static analyzers as a certifícate. The validity of the abstraction on the consumer side is checked in a single-pass by a very efficient and specialized abstractinterpreter. We have implemented and benchmarked ACC within CiaoPP. The experimental results show that the checking phase is indeed faster than the proof generation phase, and that the sizes of certificates are reasonable. Moreover, the preprocessor is based on compile-time (and run-time) tools for the certification of CLP programs with resource consumption assurances
    • …
    corecore