2,621 research outputs found

    An algorithm for clock synchronization with the gradient property in sensor networks

    Full text link
    We introduce a distributed algorithm for clock synchronization in sensor networks. Our algorithm assumes that nodes in the network only know their immediate neighborhoods and an upper bound on the network's diameter. Clock-synchronization messages are only sent as part of the communication, assumed reasonably frequent, that already takes place among nodes. The algorithm has the gradient property of [2], achieving an O(1) worst-case skew between the logical clocks of neighbors. As in the case of [3,8], the algorithm's actions are such that no constant lower bound exists on the rate at which logical clocks progress in time, and for this reason the lower bound of [2,5] that forbids constant skew between neighbors does not apply

    Inhibitor regulation of tissue kallikrein activity in the synovial fluid of patients with rheumatoid athritis

    Get PDF
    Tissue kallikrein (TK) and 1-antitrypsin (AT)/TK complexes can be detected in SF from patients with RA if components of the fluids which interfere with the detection of TK are removed. 2-Macroglobulin (2-M) in SF was demonstrated to contain trapped proteases which were still active in amidase assays. Removal of 2-M from RA SF reduced their amidase activity. However, at least some of the remaining activity was due to TK because it was soya bean trypsin inhibitor resistant and trasylol sensitive and was partly removed by affinity chromatography on anti-TK sepharose. Removal of RF from the fluids reduced the values obtained for TK levels by ELISA. Addition of SF to human urinary kallikrein (HUK) considerably reduced the levels of TK detected suggesting the presence of a TK ELISA inhibitor in the fluids. Removal of components of >300 kDa from SF markedly reduced the TK ELISA inhibitory activity and increased the values for both the TK and l-AT/TK levels in fluids as measured by ELISA. It is considered this novel inhibitor does not bind to the active site of TK but rather binds to the site reactive with anti-TK antibodies

    HI observations of the nearest starburst galaxy NGC 253 with the SKA precursor KAT-7

    Get PDF
    We present HI observations of the Sculptor Group starburst spiral galaxy NGC 253, obtained with the Karoo Array Telescope (KAT-7). KAT-7 is a pathfinder for the SKA precursor MeerKAT, under construction. The short baselines and low system temperature of the telescope make it very sensitive to large scale, low surface brightness emission. The KAT-7 observations detected 33% more flux than previous VLA observations, mainly in the outer parts and in the halo for a total HI mass of 2.1±0.12.1 \pm 0.1 ×109\times 10^{9} M_{\odot}. HI can be found at large distances perpendicular to the plane out to projected distances of ~9-10 kpc away from the nucleus and ~13-14 kpc at the edge of the disk. A novel technique, based on interactive profile fitting, was used to separate the main disk gas from the anomalous (halo) gas. The rotation curve (RC) derived for the HI disk confirms that it is declining in the outer parts, as seen in previous optical Fabry-Perot measurements. As for the anomalous component, its RC has a very shallow gradient in the inner parts and turns over at the same radius as the disk, kinematically lagging by ~100 km/sec. The kinematics of the observed extra planar gas is compatible with an outflow due to the central starburst and galactic fountains in the outer parts. However, the gas kinematics shows no evidence for inflow. Analysis of the near-IR WISE data, shows clearly that the star formation rate (SFR) is compatible with the starburst nature of NGC 253.Comment: 18 pages, 20 figures, 8 Tables. Accepted for publication to MNRA

    The Globular Cluster System in the Inner Region of M87

    Get PDF
    1057 globular cluster candidates have been identified in a WFPC2 image of the inner region of M87. The Globular Cluster Luminosity Function (GCLF) can be well fit by a Gaussian profile with a mean value of m_V^0=23.67 +/- 0.07 mag and sigma=1.39 +/- 0.06 mag (compared to m_V^0=23.74 mag and sigma=1.44 mag from an earlier study using the same data by Whitmore it et al. 1995). The GCLF in five radial bins is found to be statistically the same at all points, showing no clear evidence of dynamical destruction processes based on the luminosity function (LF), in contradiction to the claim by Gnedin (1997). Similarly, there is no obvious correlation between the half light radius of the clusters and the galactocentric distance. The core radius of the globular cluster density distribution is R_c=56'', considerably larger than the core of the stellar component (R_c=6.8''). The mean color of the cluster candidates is V-I=1.09 mag which corresponds to an average metallicity of Fe/H = -0.74 dex. The color distribution is bimodal everywhere, with a blue peak at V-I=0.95 mag and a red peak at V-I=1.20 mag. The red population is only 0.1 magnitude bluer than the underlying galaxy, indicating that these clusters formed late in the metal enrichment history of the galaxy and were possibly created in a burst of star/cluster formation 3-6 Gyr after the blue population. We also find that both the red and the blue cluster distributions have a more elliptical shape (Hubble type E3.5) than the nearly spherical galaxy. The average half light radius of the clusters is ~2.5 pc which is comparable to the 3 pc average effective radius of the Milky Way clusters, though the red candidates are ~20% smaller than the blue ones.Comment: 40 pages, 17 figures, 4 tables, latex, accepted for publication in the Ap

    Onset of Phase Synchronization in Neurons Conneted via Chemical Synapses

    Full text link
    We study the onset of synchronous states in realistic chaotic neurons coupled by mutually inhibitory chemical synapses. For the realistic parameters, namely the synaptic strength and the intrinsic current, this synapse introduces non-coherences in the neuronal dynamics, yet allowing for chaotic phase synchronization in a large range of parameters. As we increase the synaptic strength, the neurons undergo to a periodic state, and no chaotic complete synchronization is found.Comment: to appear in Int. J. Bif. Chao

    Towards a Full Census of the Obscure(d) Vela Supercluster using MeerKAT

    Full text link
    Recent spectroscopic observations of a few thousand partially obscured galaxies in the Vela constellation revealed a massive overdensity on supercluster scales straddling the Galactic Equator (l \sim 272.5deg) at cz18000cz \sim 18000km/s. It remained unrecognised because it is located just beyond the boundaries and volumes of systematic whole-sky redshift and peculiar velocity surveys - and is obscured by the Milky Way. The structure lies close to the apex where residual bulkflows suggest considerable mass excess. The uncovered Vela Supercluster (VSCL) conforms of a confluence of merging walls, but its core remains uncharted. At the thickest foreground dust column densities (|b| < 6 deg) galaxies are not visible and optical spectroscopy is not effective. This precludes a reliable estimate of the mass of VSCL, hence its effect on the cosmic flow field and the peculiar velocity of the Local Group. Only systematic HI-surveys can bridge that gap. We have run simulations and will present early-science observing scenarios with MeerKAT 32 (M32) to complete the census of this dynamically and cosmologically relevant supercluster. M32 has been put forward because this pilot project will also serve as precursor project for HI MeerKAT Large Survey Projects, like Fornax and Laduma. Our calculations have shown that a survey area of the fully obscured part of the supercluster, where the two walls cross and the potential core of the supercluster resides, can be achieved on reasonable time-scales (200 hrs) with M32.Comment: 10 pages, 3 figures, accepted for publication, Proceedings of Science, workshop on "MeerKAT Science: On the Pathway to the SKA", held in Stellenbosch 25-27 May 201

    Ultrasound-mediated optical tomography: a review of current methods

    No full text
    Ultrasound-mediated optical tomography (UOT) is a hybrid technique that is able to combine the high penetration depth and high spatial resolution of ultrasound imaging to overcome the limits imposed by optical scattering for deep tissue optical sensing and imaging. It has been proposed as a method to detect blood concentrations, oxygenation and metabolism at depth in tissue for the detection of vascularized tumours or the presence of absorbing or scattering contrast agents. In this paper, the basic principles of the method are outlined and methods for simulating the UOT signal are described. The main detection methods are then summarized with a discussion of the advantages and disadvantages of each. The recent focus on increasing the weak UOT signal through the use of the acoustic radiation force is explained, together with a summary of our results showing sensitivity to the mechanical shear stiffness and optical absorption properties of tissue-mimicking phantoms

    Robustness and Enhancement of Neural Synchronization by Activity-Dependent Coupling

    Get PDF
    We study the synchronization of two model neurons coupled through a synapse having an activity-dependent strength. Our synapse follows the rules of Spike-Timing Dependent Plasticity (STDP). We show that this plasticity of the coupling between neurons produces enlarged frequency locking zones and results in synchronization that is more rapid and much more robust against noise than classical synchronization arising from connections with constant strength. We also present a simple discrete map model that demonstrates the generality of the phenomenon.Comment: 4 pages, accepted for publication in PR

    A comparison of spectroscopy and imaging techniques utilizing spectrally resolved diffusely reflected light for intraoperative margin assessment in breast-conserving surgery: a systematic review and meta-analysis

    Get PDF
    Up to 19% of patients require re-excision surgery due to positive margins in breast-conserving surgery (BCS). Intraoperative margin assessment tools (IMAs) that incorporate tissue optical measurements could help reduce re-excision rates. This review focuses on methods that use and assess spectrally resolved diffusely reflected light for breast cancer detection in the intraoperative setting. Following PROSPERO registration (CRD42022356216), an electronic search was performed. The modalities searched for were diffuse reflectance spectroscopy (DRS), multispectral imaging (MSI), hyperspectral imaging (HSI), and spatial frequency domain imaging (SFDI). The inclusion criteria encompassed studies of human in vivo or ex vivo breast tissues, which presented data on accuracy. The exclusion criteria were contrast use, frozen samples, and other imaging adjuncts. 19 studies were selected following PRISMA guidelines. Studies were divided into point-based (spectroscopy) or whole field-of-view (imaging) techniques. A fixed-or random-effects model analysis generated pooled sensitivity/specificity for the different modalities, following heterogeneity calculations using the Q statistic. Overall, imaging-based techniques had better pooled sensitivity/specificity (0.90 (CI 0.76-1.03)/0.92 (CI 0.78-1.06)) compared with probe-based techniques (0.84 (CI 0.78-0.89)/0.85 (CI 0.79-0.91)). The use of spectrally resolved diffusely reflected light is a rapid, non-contact technique that confers accuracy in discriminating between normal and malignant breast tissue, and it constitutes a potential IMA tool
    corecore