2,673 research outputs found
Efficient Wiener filtering without preconditioning
We present a new approach to calculate the Wiener filter solution of general
data sets. It is trivial to implement, flexible, numerically absolutely stable,
and guaranteed to converge. Most importantly, it does not require an ingenious
choice of preconditioner to work well. The method is capable of taking into
account inhomogeneous noise distributions and arbitrary mask geometries. It
iteratively builds up the signal reconstruction by means of a messenger field,
introduced to mediate between the different preferred bases in which signal and
noise properties can be specified most conveniently. Using cosmic microwave
background (CMB) radiation data as a showcase, we demonstrate the capabilities
of our scheme by computing Wiener filtered WMAP7 temperature and polarization
maps at full resolution for the first time. We show how the algorithm can be
modified to synthesize fluctuation maps, which, combined with the Wiener filter
solution, result in unbiased constrained signal realizations, consistent with
the observations. The algorithm performs well even on simulated CMB maps with
Planck resolution and dynamic range.Comment: 5 pages, 2 figures. Submitted to Astronomy and Astrophysics. Replaced
to match published versio
ARKCoS: Artifact-Suppressed Accelerated Radial Kernel Convolution on the Sphere
We describe a hybrid Fourier/direct space convolution algorithm for compact
radial (azimuthally symmetric) kernels on the sphere. For high resolution maps
covering a large fraction of the sky, our implementation takes advantage of the
inexpensive massive parallelism afforded by consumer graphics processing units
(GPUs). Applications involve modeling of instrumental beam shapes in terms of
compact kernels, computation of fine-scale wavelet transformations, and optimal
filtering for the detection of point sources. Our algorithm works for any
pixelization where pixels are grouped into isolatitude rings. Even for kernels
that are not bandwidth limited, ringing features are completely absent on an
ECP grid. We demonstrate that they can be highly suppressed on the popular
HEALPix pixelization, for which we develop a freely available implementation of
the algorithm. As an example application, we show that running on a high-end
consumer graphics card our method speeds up beam convolution for simulations of
a characteristic Planck high frequency instrument channel by two orders of
magnitude compared to the commonly used HEALPix implementation on one CPU core
while maintaining at typical a fractional RMS accuracy of about 1 part in 10^5.Comment: 10 pages, 6 figures. Submitted to Astronomy and Astrophysics.
Replaced to match published version. Code can be downloaded at
https://github.com/elsner/arkco
Fast calculation of the Fisher matrix for cosmic microwave background experiments
The Fisher information matrix of the cosmic microwave background (CMB)
radiation power spectrum coefficients is a fundamental quantity that specifies
the information content of a CMB experiment. In the most general case, its
exact calculation scales with the third power of the number of data points N
and is therefore computationally prohibitive for state-of-the-art surveys.
Applicable to a very large class of CMB experiments without special symmetries,
we show how to compute the Fisher matrix in only O(N^2 log N) operations as
long as the inverse noise covariance matrix can be applied to a data vector in
time O(l_max^3 log l_max). This assumption is true to a good approximation for
all CMB data sets taken so far. The method takes into account common
systematics such as arbitrary sky coverage and realistic noise correlations. As
a consequence, optimal quadratic power spectrum estimation also becomes
feasible in O(N^2 log N) operations for this large group of experiments. We
discuss the relevance of our findings to other areas of cosmology where optimal
power spectrum estimation plays a role.Comment: 4 pages, 1 figures. Accepted for publication in Astronomy and
Astrophysics Letters. Replaced to match published versio
Large-scale circulation departures related to wet episodes in northeast Brazil
Large scale circulation features are presented as related to wet spells over northeast Brazil (Nordeste) during the rainy season (March and April) of 1979. The rainy season season is devided into dry and wet periods, the FGGE and geostationary satellite data was averaged and mean and departure fields of basic variables and cloudiness were studied. Analysis of seasonal mean circulation features show: lowest sea level easterlies beneath upper level westerlies; weak meridional winds; high relative humidity over the Amazon basin and relatively dry conditions over the South Atlantic Ocean. A fluctuation was found in the large scale circulation features on time scales of a few weeks or so over Nordeste and the South Atlantic sector. Even the subtropical High SLP's have large departures during wet episodes, implying a short period oscillation in the Southern Hemisphere Hadley circulation
Using hybrid GPU/CPU kernel splitting to accelerate spherical convolutions
We present a general method for accelerating by more than an order of
magnitude the convolution of pixelated functions on the sphere with a
radially-symmetric kernel. Our method splits the kernel into a compact
real-space component and a compact spherical harmonic space component. These
components can then be convolved in parallel using an inexpensive commodity GPU
and a CPU. We provide models for the computational cost of both real-space and
Fourier space convolutions and an estimate for the approximation error. Using
these models we can determine the optimum split that minimizes the wall clock
time for the convolution while satisfying the desired error bounds. We apply
this technique to the problem of simulating a cosmic microwave background (CMB)
anisotropy sky map at the resolution typical of the high resolution maps
produced by the Planck mission. For the main Planck CMB science channels we
achieve a speedup of over a factor of ten, assuming an acceptable fractional
rms error of order 1.e-5 in the power spectrum of the output map.Comment: 9 pages, 11 figures, 1 table, accepted by Astronomy & Computing w/
minor revisions. arXiv admin note: substantial text overlap with
arXiv:1211.355
Methods of optimizing X-ray optical prescriptions for wide-field applications
We are working on the development of a method for optimizing wide-field X-ray
telescope mirror prescriptions, including polynomial coefficients, mirror shell
relative displacements, and (assuming 4 focal plane detectors) detector
placement along the optical axis and detector tilt. With our methods, we hope
to reduce number of Monte-Carlo ray traces required to search the
multi-dimensional design parameter space, and to lessen the complexity of
finding the optimum design parameters in that space. Regarding higher order
polynomial terms as small perturbations of an underlying Wolter I optic design,
we begin by using the results of Monte-Carlo ray traces to devise trial
analytic functions, for an individual Wolter I mirror shell, that can be used
to represent the spatial resolution on an arbitrary focal surface. We then
introduce a notation and tools for Monte-Carlo ray tracing of a polynomial
mirror shell prescription which permits the polynomial coefficients to remain
symbolic. In principle, given a set of parameters defining the underlying
Wolter I optics, a single set of Monte-Carlo ray traces are then sufficient to
determine the polymonial coefficients through the solution of a large set of
linear equations in the symbolic coefficients. We describe the present status
of this development effort.Comment: 14 pages, to be presented at SPIE conference 7732 (paper 93
Improved simulation of non-Gaussian temperature and polarization CMB maps
We describe an algorithm to generate temperature and polarization maps of the
cosmic microwave background radiation containing non-Gaussianity of arbitrary
local type. We apply an optimized quadrature scheme that allows us to predict
and control integration accuracy, speed up the calculations, and reduce memory
consumption by an order of magnitude. We generate 1000 non-Gaussian CMB
temperature and polarization maps up to a multipole moment of l_max = 1024. We
validate the method and code using the power spectrum and the fast cubic
(bispectrum) estimator and find consistent results. The simulations are
provided to the community.Comment: 18 pages, 19 figures. Accepted for publication in ApJS. Simulations
can be obtained at http://planck.mpa-garching.mpg.de/cmb/fnl-simulation
Recommended from our members
Analogy in Contact: Modeling Maltese Plural Inflection
Maltese is often described as having a hybrid morphological system resulting from extensive contact between Semitic and Romance language varieties. Such a designation reflects an etymological divide as much as it does a larger tradition in the literature to consider concatenative and non-concatenative morphological patterns as distinct in the language architecture. Using a combination of computational modeling and information theoretic methods, we quantify the extent to which the phonology and etymology of a Maltese singular noun may predict the morphological process (affixal vs. templatic) as well as the specific plural allomorph (affix or template) relating a singular noun to its associated plural form(s) in the lexicon. The results indicate phonological pressures shape the organization of the Maltese lexicon with predictive power that extends beyond that of a word\u27s etymology, in line with analogical theories of language change in contact
- …