8,624 research outputs found
The Hubble Space Telescope high speed photometer
The Hubble Space Telescope will provide the opportunity to perform precise astronomical photometry above the disturbing effects of the atmosphere. The High Speed Photometer is designed to provide the observatory with a stable, precise photometer with wide dynamic range, broad wavelenth coverage, time resolution in the microsecond region, and polarimetric capability. Here, the scientific requirements for the instrument are examined, the unique design features of the photometer are explored, and the improvements to be expected over the performance of ground-based instruments are projected
Achievement goals, self-handicapping, and performance: A 2 × 2 achievement goal perspective
Elliot and colleagues (2006) examined the effects of experimentally induced achievement goals, proposed by the
trichotomous model, on self-handicapping and performance in physical education. Our study replicated and extended the
work of Elliot et al. by experimentally promoting all four goals proposed by the 262 model (Elliot & McGregor, 2001),
measuring the participants’ own situational achievement goals, using a relatively novel task, and testing the participants in a group setting. We used a randomized experimental design with four conditions that aimed to induce one of the four goals advanced by the 262 model. The participants (n¼138) were undergraduates who engaged in a dart-throwing task. The results pertaining to self-handicapping partly replicated Elliot and colleagues’ findings by showing that experimentally promoted performance-avoidance goals resulted in less practice. In contrast, the promotion of mastery-avoidance goals did
not result in less practice compared with either of the approach goals. Dart-throwing performance did not differ among the four goal conditions. Personal achievement goals did not moderate the effects of experimentally induced goals on selfhandicapping and performance. The extent to which mastery-avoidance goals are maladaptive is discussed, as well as the interplay between personal and experimentally induced goals
Coulomb and quantum oscillator problems in conical spaces with arbitrary dimensions
The Schr\"odinger equations for the Coulomb and the Harmonic oscillator
potentials are solved in the cosmic-string conical space-time. The spherical
harmonics with angular deficit are introduced.
The algebraic construction of the harmonic oscillator eigenfunctions is
performed through the introduction of non-local ladder operators. By exploiting
the hidden symmetry of the two-dimensional harmonic oscillator the eigenvalues
for the angular momentum operators in three dimensions are reproduced.
A generalization for N-dimensions is performed for both Coulomb and harmonic
oscillator problems in angular deficit space-times.
It is thus established the connection among the states and energies of both
problems in these topologically non-trivial space-times.Comment: 15 page
Group projector generalization of dirac-heisenberg model
The general form of the operators commuting with the ground representation
(appearing in many physical problems within single particle approximation) of
the group is found. With help of the modified group projector technique, this
result is applied to the system of identical particles with spin independent
interaction, to derive the Dirac-Heisenberg hamiltonian and its effective space
for arbitrary orbital occupation numbers and arbitrary spin. This gives
transparent insight into the physical contents of this hamiltonian, showing
that formal generalizations with spin greater than 1/2 involve nontrivial
additional physical assumptions.Comment: 10 page
Pressure-temperature phase diagrams of selenium and sulfur in terms of Patashinski model
The pressure - temperature phase diagrams of Se and S are calculated. Both
melting and polymorphous phase transition are described in the frames of
statistical Patashinski model. The results are in good agreement with
experimental data of Brazhkin et. al.Comment: 3 eps figures, will appear in Physica A, mail to first author
[email protected]
Hepatocellular carcinoma surveillance, early detection and survival in a privately insured US cohort
Background/AimsSemiannual hepatocellular carcinoma (HCC) surveillance is recommended in patients with cirrhosis; however, recent studies have raised questions over its utility. We investigated the impact of surveillance on early detection and survival in a nationally representative database.MethodsWe included patients with cirrhosis and HCC from the Optum database (2001‐2015) with >6 months of follow‐up between cirrhosis and HCC diagnoses. Surveillance adherence was defined as proportion of time covered (PTC), with each 6‐month period after abdominal imaging defined as ‘covered’. To determine the association between surveillance and mortality, we compared PTC between fatal and non‐fatal HCC.ResultsOf 1001 patients with cirrhosis and HCC, 256 died with median follow‐up 30 months. Median PTC by any imaging was greater in early‐stage vs late‐stage HCC (43.6% vs 37.4%, P = .003) and non‐fatal vs fatal HCC (40.8% vs 34.3%, P = .001). In multivariable analyses, each 10% increase in PTC was associated with increased early HCC detection (OR 1.07, 95% CI 1.01‐1.12) and decreased mortality (HR 0.95; 95% CI 0.90‐1.00). On subgroup analysis, PTC by CT/MRI was associated with early tumour detection and decreased mortality; however, PTC by ultrasound was only associated with early detection but not decreased mortality. These findings were robust across sensitivity analyses.ConclusionsIn a US cohort of privately insured HCC patients, PTC by any imaging modality was associated with increased early detection and decreased mortality. Continued evaluation of HCC surveillance strategies and effectiveness is warranted.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154974/1/liv14379_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154974/2/liv14379.pd
Systematic and Causal Corrections to the Coherent Potential Approximation
The Dynamical Cluster Approximation (DCA) is modified to include disorder.
The DCA incorporates non-local corrections to local approximations such as the
Coherent Potential Approximation (CPA) by mapping the lattice problem with
disorder, and in the thermodynamic limit, to a self-consistently embedded
finite-sized cluster problem. It satisfies all of the characteristics of a
successful cluster approximation. It is causal, preserves the point-group and
translational symmetry of the original lattice, recovers the CPA when the
cluster size equals one, and becomes exact as . We use the DCA to
study the Anderson model with binary diagonal disorder. It restores sharp
features and band tailing in the density of states which reflect correlations
in the local environment of each site. While the DCA does not describe the
localization transition, it does describe precursor effects of localization.Comment: 11 pages, LaTeX, and 11 PS figures, to appear in Phys. Rev. B.
Revised version with typos corrected and references adde
Amplitude Modulation and Relaxation-Oscillation of Counterpropagating Rolls within a Broken-Symmetry Laser-Induced Electroconvection Strip
We report a liquid-crystal pattern-formation experiment in which we break the
lateral (translational) symmetry of a nematic medium with a laser-induced
thermal gradient. The work is motivated by an improved measurement (reported
here) of the temperature dependence of the electroconvection threshold voltage
in planar-nematic 4-methoxybenzylidene-4-butylaniline (MBBA). In contrast with
other broken-symmetry-pattern studies that report a uniform drift, we observe a
strip of counterpropagating rolls that collide at a sink point, and a strong
temporally periodic amplitude modulation within a width of 3-4 rolls about the
sink point. The time dependence of the amplitude at a fixed position is
periodic but displays a nonsinusoidal relaxation-oscillation profile. After
reporting experimental results based on spacetime contours and wavenumber
profiles, along with a measurement of the change in the drift frequency with
applied voltage at a fixed control parameter, we propose some potential
guidelines for a theoretical model based on saddle-point solutions for
Eckhaus-unstable states and coupled complex Ginzburg-Landau equations.
Published in PRE 73, 036317 (2006).Comment: Published in Physical Review E in March 200
Charon's radius and density from the combined data sets of the 2005 July 11 occultation
The 2005 July 11 C313.2 stellar occultation by Charon was observed by three
separate research groups, including our own, at observatories throughout South
America. Here, the published timings from the three data sets have been
combined to more accurately determine the mean radius of Charon: 606.0 +/- 1.5
km. Our analysis indicates that a slight oblateness in the body (0.006 +/-
0.003) best matches the data, with a confidence level of 86%. The oblateness
has a pole position angle of 71.4 deg +/- 10.4 deg and is consistent with
Charon's pole position angle of 67 deg. Charon's mean radius corresponds to a
bulk density of 1.63 +/- 0.07 g/cm3, which is significantly less than Pluto's
(1.92 +/- 0.12 g/cm3). This density differential favors an impact formation
scenario for the system in which at least one of the impactors was
differentiated. Finally, unexplained differences between chord timings measured
at Cerro Pachon and the rest of the data set could be indicative of a
depression as deep as 7 km on Charon's limb.Comment: 25 pages including 4 tables and 2 figures. Submitted to the
Astronomical Journal on 2006 Feb 0
ABERRANT TESTA SHAPE encodes a KANADI family member, linking polarity determination to separation and growth of Arabidopsis ovule integuments
The Arabidopsis aberrant testa shape (ats) mutant produces a single integument instead of the two integuments seen in wild-type ovules. Cellular anatomy and patterns of marker gene expression indicate that the single integument results from congenital fusion of the two integuments of the wild type. Isolation of the ATS locus showed it to encode a member of the KANADI (KAN) family of putative transcription factors, previously referred to as KAN4. ATS was expressed at the border between the two integuments at the time of their initiation, with expression later confined to the abaxial layer of the inner integument. In an inner no outer (ino) mutant background, where an outer integument does not form, the ats mutation led to amorphous inner integument growth. The kan1 kan2 double mutant exhibits a similar amorphous growth of the outer integument without affecting inner integument growth. We hypothesize that ATS and KAN1/KAN2 play similar roles in the specification of polarity in the inner and outer integuments, respectively, that parallel the known roles of KAN proteins in promoting abaxial identity during leaf development. INO and other members of the YABBY gene family have been hypothesized to have similar parallel roles in outer integument and leaf development. Together, these two hypotheses lead us to propose a model for normal integument growth that also explains the described mutant phenotypes
- …