15 research outputs found

    Twelve-month observational study of children with cancer in 41 countries during the COVID-19 pandemic

    Get PDF
    Introduction Childhood cancer is a leading cause of death. It is unclear whether the COVID-19 pandemic has impacted childhood cancer mortality. In this study, we aimed to establish all-cause mortality rates for childhood cancers during the COVID-19 pandemic and determine the factors associated with mortality. Methods Prospective cohort study in 109 institutions in 41 countries. Inclusion criteria: children <18 years who were newly diagnosed with or undergoing active treatment for acute lymphoblastic leukaemia, non-Hodgkin's lymphoma, Hodgkin lymphoma, retinoblastoma, Wilms tumour, glioma, osteosarcoma, Ewing sarcoma, rhabdomyosarcoma, medulloblastoma and neuroblastoma. Of 2327 cases, 2118 patients were included in the study. The primary outcome measure was all-cause mortality at 30 days, 90 days and 12 months. Results All-cause mortality was 3.4% (n=71/2084) at 30-day follow-up, 5.7% (n=113/1969) at 90-day follow-up and 13.0% (n=206/1581) at 12-month follow-up. The median time from diagnosis to multidisciplinary team (MDT) plan was longest in low-income countries (7 days, IQR 3-11). Multivariable analysis revealed several factors associated with 12-month mortality, including low-income (OR 6.99 (95% CI 2.49 to 19.68); p<0.001), lower middle income (OR 3.32 (95% CI 1.96 to 5.61); p<0.001) and upper middle income (OR 3.49 (95% CI 2.02 to 6.03); p<0.001) country status and chemotherapy (OR 0.55 (95% CI 0.36 to 0.86); p=0.008) and immunotherapy (OR 0.27 (95% CI 0.08 to 0.91); p=0.035) within 30 days from MDT plan. Multivariable analysis revealed laboratory-confirmed SARS-CoV-2 infection (OR 5.33 (95% CI 1.19 to 23.84); p=0.029) was associated with 30-day mortality. Conclusions Children with cancer are more likely to die within 30 days if infected with SARS-CoV-2. However, timely treatment reduced odds of death. This report provides crucial information to balance the benefits of providing anticancer therapy against the risks of SARS-CoV-2 infection in children with cancer

    Changes in recruitment of motor cortex excitation and inhibition in patients with drug-induced tardive syndromes

    No full text
    OBJECTIVES: It has recently been suggested that drug-induced tardive syndromes (TS) might be due to maladaptive plasticity, which increases motor excitability in cerebral cortex and basal ganglia. In order to test this hypothesis, we performed the first measurements of cortical excitability in TS. METHODS: Motor cortex excitability was examined using transcranial magnetic stimulation (TMS) in 22 TS patients and compared with that in 20 age and sex-matched healthy individuals. Resting and active motor threshold (RMT, AMT) and input-output curves (I/O curves) assessed corticospinal excitability. The duration of the contralateral silent period (cSP) at a range of stimulation intensities and ipsilateral silent period (iSP) were used as measures of inhibition. RESULTS: There were no significant differences in RMT and AMT between patients and controls, although the input-output curves were significantly steeper in patients. The cSP (at different stimulus intensities) and iSP were both longer in the patients compared to the control group. However, most of this difference could be accounted for by increased recruitment of motor evoked potentials (MEPs) in patients. CONCLUSION: TS is characterized by hyperexcitability of corticospinal output that might contribute to the lack of selectivity in muscle recruitment and contribute to excess involuntary movement. The findings are opposite to those in naturally-occurring hyperkinesia such as Sydenham's and Huntington's chorea, suggesting a fundamental difference in the pathophysiology

    Temperature sensitivity of food legumes: a physiological insight

    No full text
    corecore