105,342 research outputs found

    Morphisms from P2 to Gr(2,C4)

    Get PDF
    In this note we study morphisms from P2 to Gr(2,C4) from the point of view of the cohomology class they represent in the Grassmannian. This leads to some new result about projection of d-uple imbedding of P2 to P5

    Evolution of the superposition of displaced number states with the two-atom multiphoton Jaynes-Cummings model: interference and entanglement

    Full text link
    In this paper we study the evolution of the two two-level atoms interacting with a single-mode quantized radiation field, namely, two-atom multiphoton Jaynes-Cummings model when the radiation field and atoms are initially prepared in the superpostion of displaced number states and excited atomic states, respectively. For this system we investigate the atomic inversion, Wigner function, phase distribution and entanglement.Comment: 18 pages, 17 figure

    Strong D* -> D+pi and B* -> B+pi couplings

    Full text link
    We compute g_{D* D pi} and g_{B* B pi} using a framework in which all elements are constrained by Dyson-Schwinger equation studies of QCD, and therefore incorporates a consistent, direct and simultaneous description of light- and heavy-quarks and the states they may constitute. We link these couplings with the heavy-light-meson leptonic decay constants, and thereby obtain g_{D* D pi}=15.9+2.1/-1.0 and g_{B* B pi}=30.0+3.2/-1.4. From the latter we infer \hat-g_B=0.37+0.04/-0.02. A comparison between g_{D* D pi} and g_{B* B pi} indicates that when the c-quark is a system's heaviest constituent, Lambda_{QCD}/m_c-corrections are not under good control.Comment: 5 pages, 1 table, 2 figure

    Reexamination of scaling in the five-dimensional Ising model

    Full text link
    In three dimensions, or more generally, below the upper critical dimension, scaling laws for critical phenomena seem well understood, for both infinite and for finite systems. Above the upper critical dimension of four, finite-size scaling is more difficult. Chen and Dohm predicted deviation in the universality of the Binder cumulants for three dimensions and more for the Ising model. This deviation occurs if the critical point T = Tc is approached along lines of constant A = L*L*(T-Tc)/Tc, then different exponents a function of system size L are found depending on whether this constant A is taken as positive, zero, or negative. This effect was confirmed by Monte Carlo simulations with Glauber and Creutz kinetics. Because of the importance of this effect and the unclear situation in the analogous percolation problem, we here reexamine the five-dimensional Glauber kinetics.Comment: 8 pages including 5 figure
    corecore