35 research outputs found

    Effects of cigarette smoke on degranulation and NO production by mast cells and epithelial cells

    Get PDF
    Exhaled nitric oxide (eNO) is decreased by cigarette smoking. The hypothesis that oxides of nitrogen (NO(X)) in cigarette smoke solution (CSS) may exert a negative feedback mechanism upon NO release from epithelial (AEC, A549, and NHTBE) and basophilic cells (RBL-2H3) was tested in vitro. CSS inhibited both NO production and degranulation (measured as release of beta-hexosaminidase) in a dose-dependent manner from RBL-2H3 cells. Inhibition of NO production by CSS in AEC, A549, and NHTBE cells was also dose-dependent. In addition, CSS decreased expression of NOS mRNA and protein expression. The addition of NO inhibitors and scavengers did not, however, reverse the effects of CSS, nor did a NO donor (SNP) or nicotine mimic CSS. N-acetyl-cysteine, partially reversed the inhibition of beta-hexosaminidase release suggesting CSS may act via oxidative free radicals. Thus, some of the inhibitory effects of CSS appear to be via oxidative free radicals rather than a NO(X )-related negative feedback

    Heat-Induced Structural Changes Affect OVA-Antigen Processing and Reduce Allergic Response in Mouse Model of Food Allergy

    Get PDF
    BACKGROUND AND AIMS: The egg protein ovalbumin (OVA) belongs to six most frequent food allergens. We investigated how thermal processing influences its ability to induce allergic symptoms and immune responses in mouse model of food allergy. METHODOLOGY/PRINCIPAL FINDINGS: Effect of increased temperature (70°C and 95°C) on OVA secondary structure was characterized by circular dichroism and by the kinetics of pepsin digestion with subsequent HPLC. BALB/c mice were sensitized intraperitoneally and challenged with repeated gavages of OVA or OVA heated to 70°C (h-OVA). Levels of allergen-specific serum antibodies were determined by ELISA (IgA and IgGs) or by β-hexosaminidase release test (IgE). Specific activities of digestive enzymes were determined in brush border membrane vesicles of jejunal enterocytes. Cytokine production and changes in regulatory T cells in mesenteric lymph nodes and spleen were assessed by ELISA and FACS. Heating of OVA to 70°C caused mild irreversible changes in secondary structure compared to boiling to 95°C (b-OVA), but both OVA treatments led to markedly different digestion kinetics and Tregs induction ability in vitro, compared to native OVA. Heating of OVA significantly decreased clinical symptoms (allergic diarrhea) and immune allergic response on the level of IgE, IL-4, IL-5, IL-13. Furthermore, h-OVA induced lower activities of serum mast cell protease-1 and enterocyte brush border membrane alkaline phosphatase as compared to native OVA. On the other hand h-OVA stimulated higher IgG2a in sera and IFN-γ secretion by splenocytes. CONCLUSIONS: Minor irreversible changes in OVA secondary structure caused by thermal processing changes both its digestion and antigenic epitopes formation, which leads to activation of different T cell subpopulations, induces shift towards Th1 response and ultimately reduces its allergenicity

    Nitration of the Egg-Allergen Ovalbumin Enhances Protein Allergenicity but Reduces the Risk for Oral Sensitization in a Murine Model of Food Allergy

    Get PDF
    Nitration of proteins on tyrosine residues, which can occur due to polluted air under "summer smog" conditions, has been shown to increase the allergic potential of allergens. Since nitration of tyrosine residues is also observed during inflammatory responses, this modification could directly influence protein immunogenicity and might therefore contribute to food allergy induction. In the current study we have analyzed the impact of protein nitration on sensitization via the oral route.BALB/c mice were immunized intragastrically by feeding untreated ovalbumin (OVA), sham-nitrated ovalbumin (snOVA) or nitrated ovalbumin (nOVA) with or without concomitant acid-suppression. To analyze the impact of the sensitization route, the allergens were also injected intraperitoneally. Animals being fed OVA or snOVA under acid-suppressive medication developed significantly elevated levels of IgE, and increased titers of specific IgG1 and IgG2a antibodies. Interestingly, oral immunizations of nOVA under anti-acid treatment did not result in IgG and IgE formation. In contrast, intraperitoneal immunization induced high levels of OVA specific IgE, which were significantly increased in the group that received nOVA by injection. Furthermore, nOVA triggered significantly enhanced mediator release from RBL cells passively sensitized with sera from allergic mice. Gastric digestion experiments demonstrated protein nitration to interfere with protein stability as nOVA was easily degraded, whereas OVA and snOVA remained stable up to 120 min. Additionally, HPLC-chip-MS/MS analysis showed that one tyrosine residue (Y(107)) being very efficiently nitrated is part of an ovalbumin epitope recognized exclusively after oral sensitization.These data indicated that despite the enhanced triggering capacity in existing allergy, nitration of OVA may be associated with a reduced de novo sensitizing capability via the oral route due to enhanced protein digestibility and/or changes in antibody epitopes

    A Novel Core Genome-Encoded Superantigen Contributes to Lethality of Community-Associated MRSA Necrotizing Pneumonia

    Get PDF
    Bacterial superantigens (SAg) stimulate T-cell hyper-activation resulting in immune modulation and severe systemic illnesses such as Staphylococcus aureus toxic shock syndrome. However, all known S. aureus SAgs are encoded by mobile genetic elements and are made by only a proportion of strains. Here, we report the discovery of a novel SAg staphylococcal enterotoxin-like toxin X (SElX) encoded in the core genome of 95% of phylogenetically diverse S. aureus strains from human and animal infections, including the epidemic community-associated methicillin-resistant S. aureus (CA-MRSA) USA300 clone. SElX has a unique predicted structure characterized by a truncated SAg B-domain, but exhibits the characteristic biological activities of a SAg including Vβ-specific T-cell mitogenicity, pyrogenicity and endotoxin enhancement. In addition, SElX is expressed by clinical isolates in vitro, and during human, bovine, and ovine infections, consistent with a broad role in S. aureus infections of multiple host species. Phylogenetic analysis suggests that the selx gene was acquired horizontally by a progenitor of the S. aureus species, followed by allelic diversification by point mutation and assortative recombination resulting in at least 17 different alleles among the major pathogenic clones. Of note, SElX variants made by human- or ruminant-specific S. aureus clones demonstrated overlapping but distinct Vβ activation profiles for human and bovine lymphocytes, indicating functional diversification of SElX in different host species. Importantly, SElX made by CA-MRSA USA300 contributed to lethality in a rabbit model of necrotizing pneumonia revealing a novel virulence determinant of CA-MRSA disease pathogenesis. Taken together, we report the discovery and characterization of a unique core genome-encoded superantigen, providing new insights into the evolution of pathogenic S. aureus and the molecular basis for severe infections caused by the CA-MRSA USA300 epidemic clone

    Streptolysin O Modulates Cytokine Synthesis in Human Peripheral Blood Mononuclear Cells

    No full text

    The time course of biological and immunochemical allergy states induced by anisakis simplex larvae in rats

    No full text
    Oral infection by Anisakis simplex third stage larvae (L3) frequently gives rise to an allergic response. To comprehend the allergic and immune responses induced by L3, we investigated the kinetics of specific antibody isotype expression and the time course of biological and immunochemical allergy states using sera prepared from rats orally infected with L3 twice, with an interval of 9 weeks between infections. Biological and immunochemical allergy states were analysed by RBL-2H3 exocytosis and by indirect ELISA for IgE, respectively. The peak IgM at reinfection (RI) was comparable or similar to that at primary infection (PI) both in levels analysed by indirect ELISA and in antigen recognition analysed by Western blot. IgG1 and IgG2a levels were higher and showed accelerated kinetics after RI vs. after PI. However, the level of IgG2b was substantially lower than that of IgG2a. Peak immunochemical and biological allergy states for RI were higher and were reached faster than those for PI. The peak biological allergy state was observed at 1 week postreinfection and this occurred sooner than that for the peak immunochemical allergy state found at 2 weeks postreinfection. Our analysis of the relationship between specific IgE avidity and biological allergy state did not show any meaningful correlation. These results suggest that the allergic response induced by L3 oral infection is predominantly caused by reinfection and that this is accompanied by an elevated IgM level, which further suggests that the biological allergy state might not be related to specific IgE avidity
    corecore