55 research outputs found

    213Bi-PAI2 conjugate selectively induces apoptosis in PC3 metastatic prostate cancer cell line and shows anti-cancer activity in a xenograft animal model

    Get PDF
    A novel α-particle emitting (213Bi) plasminogen activator inhibitor type 2 construct, which targets the membrane-bound urokinase plasminogen activator on prostate cancer cells, was prepared and evaluated in vitro and in a xenograft animal model. The PC3 prostate cancer cell line expresses urokinase plasminogen activator which binds to its receptor on the cell membrane; plasminogen activator inhibitor type 2 is bound to urokinase plasminogen activator/urokinase plasminogen activator receptor to form stable complexes. In vitro, the cytotoxicity of 213Bi-plasminogen activator inhibitor type 2 against prostate cancer cells was tested using the MTS assay and apoptosis was documented using terminal deoxynucleotidyl transferase-mediated deoxyuridinetriphosphate nick end-labelling (TUNEL) assay. In vivo, antiproliferative effects for tumours and prostate cancer lymph node metastasis were carried out in an athymic nude mouse model with a subcutaneous xenograft of PC3 cells. 213Bi-plasminogen activator inhibitor type 2 was specifically cytotoxic to PC3 cells in a concentration-dependent fashion, causing the cells to undergo apoptosis. A single local or i.p. injection of 213Bi-plasminogen activator inhibitor type 2 was able to completely regress the growth of tumours and lymph node metastases 2 days post subcutaneous inoculation, and obvious tumour regression was achieved in the therapy groups compared with control groups with 213Bi-plasminogen activator inhibitor type 2 when the tumours measured 30–40 mm3 and 85–100 mm3. All control animals and one of five (20%) mice treated with 3 mCi kg−1 213Bi-plasminogen activator inhibitor type 2 developed metastases in the lymph nodes while no lymphatic spread of cancer was found in the 6 mCi kg−1 treated groups at 2 days and 2 weeks post-cell inoculation. These results demonstrate that this novel 213Bi-plasminogen activator inhibitor type 2 conjugate selectively targets prostate cancer in vitro and in vivo, and could be considered for further development for the therapy of prostate cancer, especially for the control of micro-metastases or in minimal residual disease

    EGF increases expression and activity of PAs in preimplantation rat embryos and their implantation rate

    Get PDF
    BACKGROUND: Embryo implantation plays a major role in embryogenesis and the outcome of pregnancy. Plasminogen activators (PAs) have been implicated in mammalian fertilization, early stages of development and embryo implantation. As in-vitro developing embryos resulted in lower implantation rate than those developed in-vivo we assume that a reduced PAs activity may be involved. In the present work we studied the effect of EGF on PAs activity, quantity and embryo implantation. METHODS: Zygotes were flushed from rat oviducts on day one of pregnancy and grown in-vitro in R1ECM supplemented with EGF (10 ng/ml) and were grown up to the blastocyst stage. The control groups were grown in the same medium without EGF. The distribution and quantity of the PAs were examined using fluorescence immunohistochemistry followed by measurement of PAs activity using the chromogenic assay. Implantation rate was studied using the embryo donation model. RESULTS: PAs distribution in the embryos was the same in EGF treated and untreated embryos. Both PAs were localized in the blastocysts' trophectoderm, supporting the assumption that PAs play a role in the implantation process in rats. EGF increased the quantity of uPA at all stages studied but the 8-cell stage as compared with controls. The tissue type PA (tPA) content was unaffected except the 8-cell stage, which was increased. The activity of uPA increased gradually towards the blastocyst stage and more so due to the presence of EGF. The activity of tPA did not vary with the advancing developmental stages although it was also increased by EGF. The presence of EGF during the preimplantation development doubled the rate of implantation of the treated group as compared with controls

    Toll-like receptors (TLRs) and mannan-binding lectin (MBL): On constant alert in a hostile environment

    Get PDF
    In the beginning were neither B cells nor T cells nor antibodies, but innate immune defense alone. The primary functional theme of innate immunity is the distinction between self and non-self, which is maintained by a vast number of cellular and subcellular components. In this context, the immense importance of the Toll-like receptors (TLRs) is well established. Positive (Darwinian) selection seems to be acting on the ligand-binding domains of these molecules, suggesting a selection pattern similar to that previously observed in the MHC proteins. In sharp contrast to TLRs, the biological significance of mannan-binding lectin (MBL) is controversial, and, concerning humans, it has been suggested that low concentration of MBL in serum represents a selective advantage. In this mini-review, based on a doctoral thesis, evolutionary aspects of TLRs and MBL are discussed

    The expression of plasminogen activator system in a rat model of periodontal wound healing

    No full text
    BACKGROUND: The plasminogen activator system has been proposed to play a role in proteolytic degradation of extracellular matrices in tissue remodeling, including wound healing. The aim of this study was to elucidate the presence of components of the plasminogen activator system during different stages of periodontal wound healing. METHODS: Periodontal wounds were created around the molars of adult rats and healing was followed for 28 days. Immunohistochemical analyses of the healing tissues and an analysis of the periodontal wound healing fluid by ELISA were carried out for the detection of tissue-type plasminogen activator (t-PA), urokinase-type plasminogen activator (u-PA), and 2 plasminogen activator inhibitors (PAI-1 and PAI-2). RESULTS: During the early stages (days 1 to 3) of periodontal wound healing, PAI-1 and PAI-2 were found to be closely associated with the deposition of a fibrin clot in the gingival sulcus. These components were strongly associated with the infiltrating inflammatory cells around the fibrin clot. During days 3 to 7, u-PA, PAI-1, and PAI-2 were associated with cells (particularly monocytes/macrophages, fibroblasts, and endothelial cells) in the newly formed granulation tissue. During days 7 to 14, a new attachment apparatus was formed during which PAI-1, PAI-2, and u-PA were localized in both periodontal ligament fibroblasts (PDL) and epithelial cells at sites where these cells were attaching to the root surface. In the periodontal wound healing fluid, the concentration for t-PA increased and peaked during the first week. PAI-2 had a similar expression to t-PA, but at a lower level over the entire wound-healing period. CONCLUSIONS: These findings indicate that the plasminogen activator system is involved in the entire process of periodontal wound healing, in particular with the formation of fibrin matrix on the root surface and its replacement by granulation tissue, as well as the subsequent formation of the attachment of soft tissue to the root surface during the later stages of wound repair
    corecore