4,268 research outputs found
Atlas Data-Challenge 1 on NorduGrid
The first LHC application ever to be executed in a computational Grid
environment is the so-called ATLAS Data-Challenge 1, more specifically, the
part assigned to the Scandinavian members of the ATLAS Collaboration. Taking
advantage of the NorduGrid testbed and tools, physicists from Denmark, Norway
and Sweden were able to participate in the overall exercise starting in July
2002 and continuing through the rest of 2002 and the first part of 2003 using
solely the NorduGrid environment. This allowed to distribute input data over a
wide area, and rely on the NorduGrid resource discovery mechanism to find an
optimal cluster for job submission. During the whole Data-Challenge 1, more
than 2 TB of input data was processed and more than 2.5 TB of output data was
produced by more than 4750 Grid jobs.Comment: Talk from the 2003 Computing in High Energy Physics and Nuclear
Physics (CHEP03), La Jolla, Ca, USA, March 2003, 7 pages, 3 ps figure
The NorduGrid architecture and tools
The NorduGrid project designed a Grid architecture with the primary goal to
meet the requirements of production tasks of the LHC experiments. While it is
meant to be a rather generic Grid system, it puts emphasis on batch processing
suitable for problems encountered in High Energy Physics. The NorduGrid
architecture implementation uses the \globus{} as the foundation for various
components, developed by the project. While introducing new services, the
NorduGrid does not modify the Globus tools, such that the two can eventually
co-exist. The NorduGrid topology is decentralized, avoiding a single point of
failure. The NorduGrid architecture is thus a light-weight, non-invasive and
dynamic one, while robust and scalable, capable of meeting most challenging
tasks of High Energy Physics.Comment: Talk from the 2003 Computing in High Energy Physics and Nuclear
Physics (CHEP03), La Jolla, Ca, USA, March 2003, 9 pages,LaTeX, 4 figures.
PSN MOAT00
The use the a high intensity neutrino beam from the ESS proton linac for measurement of neutrino CP violation and mass hierarchy
It is proposed to complement the ESS proton linac with equipment that would enable the production, concurrently with the production of the planned ESS beam used for neutron production, of a 5 MW beam of 10 2.5 GeV protons per year in microsecond short pulses to produce a neutrino Super Beam, and to install a megaton underground water Cherenkov detector in a mine to detect appearance in the produced beam. Results are presented of preliminary calculations of the sensitivity to neutrino CP violation and the mass hierarchy as a function of the neutrino baseline. The results indicate that, with 8 years of data taking with an antineutrino beam and 2 years with a neutrino beam and a baseline distance of around 400 km, CP violation could be discovered at 5 (3 ) confidence level in 48% (73%) of the total CP violation angular range. With the same baseline, the neutrino mass hierarchy could be determined at 3 level over most of the total CP violation angular range. There are several underground mines with a depth of more than 1000 m, which could be used for the creation of the underground site for the neutrino detector and which are situated within or near the optimal baseline range
EuCARD Newsletter Issue 2
European Coordination for Accelerator Research and Development (EuCARD) Newsletter Issue 2: July - September 2009 * A word from the Governing Board Chairman * Amassing the neutrino community * Start by probing the crab cavities * Breaking news for Proton "Surfatrons" * For EuCARD members: Interim reportin
Synchronization of the Distributed Readout Frontend Electronics of the Baby MIND Detector
Baby MIND is a new downstream muon range detector for the WGASCI experiment. This article discusses the distributed readout system and its timing requirements. The paper presents the design of the synchronization subsystem and the results of its test
Results of the EUROTeV Post Collision Line Design (PCDL) Task
This paper is the deliverable of the EUROTeV Post Collision Line Design (PCDL) task and gives an overview of the published results
The SuperFGD Prototype charged particle beam tests
A novel scintillator detector, the SuperFGD, has been selected as the main neutrino target for an upgrade of the T2K experiment ND280 near detector. The detector design will allow nearly 4π coverage for neutrino interactions at the near detector and will provide lower energy thresholds, significantly reducing systematic errors for the experiment. The SuperFGD is made of optically-isolated scintillator cubes of size 10×10×10 mm3, providing the required spatial and energy resolution to reduce systematic uncertainties for future T2K runs. The SuperFGD for T2K will have close to two million cubes in a 1920 × 560 × 1840 mm3 volume. A prototype made of 24 × 8 × 48 cubes was tested at a charged particle beamline at the CERN PS facility. The SuperFGD Prototype was instrumented with readout electronics similar to the future implementation for T2K . Results on electronics and detector response are reported in this paper, along with a discussion of the 3D reconstruction capabilities of this type of detector. Several physics analyses with the prototype data are also discussed, including a study of stopping protons
- …