2,428 research outputs found
Synergism between Medihoney and Rifampicin against Methicillin-Resistant Staphylococcus aureus (MRSA)
Skin and chronic wound infections caused by highly antibiotic resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) are an increasing and urgent health problem worldwide, particularly with sharp increases in obesity and diabetes. New Zealand manuka honey has potent broad-spectrum antimicrobial activity, has been shown to inhibit the growth of MRSA strains, and bacteria resistant to this honey have not been obtainable in the laboratory. Combinational treatment of chronic wounds with manuka honey and common antibiotics may offer a wide range of advantages including synergistic enhancement of the antibacterial activity, reduction of the effective dose of the antibiotic, and reduction of the risk of antibiotic resistance. The aim of this study was to investigate the effect of Medihoney in combination with the widely used antibiotic rifampicin on S. aureus. Using checkerboard microdilution assays, time-kill curve experiments and agar diffusion assays, we show a synergism between Medihoney and rifampicin against MRSA and clinical isolates of S. aureus. Furthermore, the Medihoney/rifampicin combination stopped the appearance of rifampicin-resistant S. aureus in vitro. Methylglyoxal (MGO), believed to be the major antibacterial compound in manuka honey, did not act synergistically with rifampicin and is therefore not the sole factor responsible for the synergistic effect of manuka honey with rifampicin. Our findings support the idea that a combination of honey and antibiotics may be an effective new antimicrobial therapy for chronic wound infections. Š 2013 Mßller et al
Avalanche precursors of failure in hierarchical fuse networks
We study precursors of failure in hierarchical random fuse network models
which can be considered as idealizations of hierarchical (bio)materials where
fibrous assemblies are held together by multi-level (hierarchical) cross-links.
When such structures are loaded towards failure, the patterns of precursory
avalanche activity exhibit generic scale invariance: Irrespective of load,
precursor activity is characterized by power-law avalanche size distributions
without apparent cut-off, with power-law exponents that decrease continuously
with increasing load. This failure behavior and the ensuing super-rough crack
morphology differ significantly from the findings in non-hierarchical
structures
Why Some Interfaces Cannot be Sharp
A central goal of modern materials physics and nanoscience is control of
materials and their interfaces to atomic dimensions. For interfaces between
polar and non-polar layers, this goal is thwarted by a polar catastrophe that
forces an interfacial reconstruction. In traditional semiconductors this
reconstruction is achieved by an atomic disordering and stoichiometry change at
the interface, but in multivalent oxides a new option is available: if the
electrons can move, the atoms don`t have to. Using atomic-scale electron energy
loss spectroscopy we find that there is a fundamental asymmetry between
ionically and electronically compensated interfaces, both in interfacial
sharpness and carrier density. This suggests a general strategy to design sharp
interfaces, remove interfacial screening charges, control the band offset, and
hence dramatically improving the performance of oxide devices.Comment: 12 pages of text, 6 figure
Defoliation of Tilia cordata trees associated with Apiognomonia errabunda infection in Finland
We investigated the causative agent of a disease outbreak affecting small-leaved limes (Tilia cordata Mill.) and resulting in darkening of the leaf petioles and excessive defoliation during summer 2016 in southern Finland. The fungal species composition of the symptomatic petioles was examined by culture isolation and molecular identification using ITS rDNA sequences, which revealed the most prevalent fungal species present in the petioles as Apiognomonia errabunda (Roberge) Hhn. Based on reviewing curated herbarium specimens deposited at the Universities of Helsinki and Turku, A. errabunda is native and widely distributed in small-leaved limes in Finland, and occasionally infects also other broadleaved trees, including Quercus robur L. and ornamental species of Tilia L. and Fagus L. The ITS sequence analysis conducted during this study revealed minor within-species polymorphisms similar to those observed earlier in the Central European and Russian populations of A. errabunda, and reports the first nucleotide sequences of this species from the Nordic countries
The native architecture of a photosynthetic membrane
In photosynthesis, the harvesting of solar energy and its subsequent conversion into a stable charge separation are dependent upon an interconnected macromolecular network of membrane-associated chlorophyllâprotein complexes. Although the detailed structure of each complex has been determined, the size and organization of this network are unknown. Here we show the use of atomic force microscopy to directly reveal a native bacterial photosynthetic membrane. This first view of any multi-component membrane shows the relative positions and associations of the photosynthetic complexes and reveals crucial new features of the organization of the network: we found that the membrane is divided into specialized domains each with a different network organization and in which one type of complex predominates. Two types of organization were found for the peripheral light-harvesting LH2 complex. In the first, groups of 10â20 molecules of LH2 form light-capture domains that interconnect linear arrays of dimers of core reaction centre (RC)âlight-harvesting 1 (RCâLH1âPufX) complexes; in the second they were found outside these arrays in larger clusters. The LH1 complex is ideally positioned to function as an energy collection hub, temporarily storing it before transfer to the RC where photochemistry occurs: the elegant economy of the photosynthetic membrane is demonstrated by the close packing of these linear arrays, which are often only separated by narrow 'energy conduits' of LH2 just two or three complexes wide
1,8-Cineole Inhibits Both Proliferation and Elongation of BY-2 Cultured Tobacco Cells
Volatile monoterpenes such as 1,8-cineole inhibit the growth of Brassica campestris seedlings in a dose-dependent manner, and the growth-inhibitory effects are more severe for roots than hypocotyls. The preferential inhibition of root growth may be explained if the compounds inhibit cell proliferation more severely than cell elongation because root growth requires both elongation and proliferation of the constituent cells, whereas hypocotyl growth depends exclusively on elongation of existing cells. In order to examine this possibility, BY-2 suspension-cultured tobacco (Nicotiana tabacum) cells were treated with 1,8-cineole, and the inhibitory effects on cell proliferation and on cell elongation were assessed quantitatively. Treatment with 1,8-cineole lowered both the mitotic index and elongation of the cells in a dose-dependent manner, and the half-maximal inhibitory concentration (IC50) for cell elongation was lower than that for cell proliferation. Moreover, 1,8-cineole also inhibited starch synthesis, with IC50 lower than that for cell proliferation. Thus, the inhibitory effects of 1,8-cineole were not specific to cell proliferation; rather, 1,8-cineole seemed inhibitory to a variety of physiological activities when it was in direct contact with target cells. Based on these results, possible mechanisms for the mode of action of 1,8-cineole and for its preferential inhibition on root growth are discussed
Ecology: a prerequisite for malaria elimination and eradication
* Existing front-line vector control measures, such as insecticide-treated nets and residual sprays, cannot break the transmission cycle of Plasmodium falciparum in the most intensely endemic parts of Africa and the Pacific
* The goal of malaria eradication will require urgent strategic investment into understanding the ecology and evolution of the mosquito vectors that transmit malaria
* Priority areas will include understanding aspects of the mosquito life cycle beyond the blood feeding processes which directly mediate malaria transmission
* Global commitment to malaria eradication necessitates a corresponding long-term commitment to vector ecolog
A characteristics framework for Semantic Information Systems Standards
Semantic Information Systems (IS) Standards play a critical role in the development of the networked economy. While their importance is undoubted by all stakeholdersâsuch as businesses, policy makers, researchers, developersâthe current state of research leaves a number of questions unaddressed. Terminological confusion exists around the notions of âbusiness semanticsâ, âbusiness-to-business interoperabilityâ, and âinteroperability standardsâ amongst others. And, moreover, a comprehensive understanding about the characteristics of Semantic IS Standards is missing. The paper addresses this gap in literature by developing a characteristics framework for Semantic IS Standards. Two case studies are used to check the applicability of the framework in a âreal-lifeâ context. The framework lays the foundation for future research in an important field of the IS discipline and supports practitioners in their efforts to analyze, compare, and evaluate Semantic IS Standard
On the magnetic fields generated by experimental dynamos
We review the results obtained by three successful fluid dynamo experiments
and discuss what has been learnt from them about the effect of turbulence on
the dynamo threshold and saturation. We then discuss several questions that are
still open and propose experiments that could be performed to answer some of
them.Comment: 40 pages, 13 figure
- âŚ