976 research outputs found

    The missing piece of the South Atlantic jigsaw: when continental break-up ignores crustal heterogeneity

    Get PDF
    Crustal heterogeneity is considered to play a critical role in the position of continental break-up, yet this can only be demonstrated when a fully constrained pre-break-up configuration of both conjugate margins is achievable. Limitations in our understanding of the pre-break-up crustal structure in the offshore region of many margins preclude this. In the southern South Atlantic, which is an archetypal conjugate margin, this can be achieved because of the high confidence in plate reconstruction. Prior to addressing the role of crustal heterogeneity, two questions have to be addressed: first, what is the location of the regionally extensive Gondwanan Orogeny that remains enigmatic in the Orange Basin, offshore South Africa; and, second, although it has been established that the Argentinian Colorado rift basin has an east–west trend perpendicular to the Orange Basin and Atlantic spreading, where is the western continuation of this east–west trend? We present here a revised structural model for the southern South Atlantic by identifying the South African fold belt offshore. The fold belt trend changes from north–south to east–west offshore and correlates directly with the restored Colorado Basin. The Colorado–Orange rifts form a tripartite system with the Namibian Gariep Belt, which we call the Garies Triple Junction. All three rift branches were active during the break-up of Gondwana, but during the Atlantic rift phase the Colorado Basin failed while the other two branches continued to rift, defining the present day location of the South Atlantic. In addressing these two outstanding questions, this study challenges the premise that crustal heterogeneity controls the position of continental break-up because seafloor spreading demonstrably cross-cuts the pre-existing crustal heterogeneity. Furthermore, we highlight the importance of differentiating between early rift evolution and subsequent rifting that occurs immediately prior to seafloor spreading

    Corrigendum to “Synovial volume vs synovial measurements from dynamic contrast enhanced MRI as measures of response in osteoarthritis” [Osteoarthritis Cartilage 24(8) (2016) 1392–1398](S106345841630005X)(10.1016/j.joca.2016.03.015)

    Get PDF
    © 2017 We have been notified by the authors that there was an error in the second sentence of the paragraph headed ‘Image analysis: segmentation’ on p. 1394 of the above article. The term interobserver should have been intraobserver. The correct sentence is as follows: Manual segmentation of the synovial tissue layer was performed on these sagittal post-contrast knee images by a single observer (intraobserver ICC = 0.94), who assessed baseline and follow-up visit MR images paired, but blinded to order. The authors would like to apologise for any inconvenience caused

    Laterally Confined Volcanic Successions (LCVS); recording rift-jumps during the formation of magma-rich margins

    Get PDF
    Seaward Dipping Reflectors (SDRs) are a characteristic feature of magma-rich margins, and represent the generation of large volumes of flood basalts at the point of continental breakup. A number of recent studies provide new insights into the emplacement and tilting of SDRs and conclude that the majority of SDRs are contained within new magmatic crust that has a close affinity to oceanic crust. However, the process by which these initial magmatic systems evolve into a fully established spreading centre remains poorly understood. Several characteristic features of magma-rich margins may be explained by the occurrence of rift-jumps during SDR emplacement, yet the cause and prevalence of such rift-jumps remain unknown. Here we constrain the 3D geometry of the continent–ocean transition in the Orange Basin, offshore South Africa. This allows us to test if, where and why such rift jumps occur. Our results demonstrate an order of along-strike segmentation previously unobserved in these settings. We demonstrate that the SDR belt is disrupted by the occurrence of a volcanic-stratigraphic package, defined as the Laterally Confined Volcanic Succession (LCVS), not previously identified on a rifted margin. We interpret this as a magmatic spreading centre that was abandoned by a subsequent rift-jump. Identification of LCVSs is important for two reasons. First, we argue that the LCVS formed via the same process as SDRs, and hence provides a unique example of SDR geometry prior to their separation onto conjugate plates. Second, as we can map out the 3D geometry of the LCVS and SDRs, we propose that rift-jumps during magma-rich margin formation may be fundamental to the establishment of a laterally continuous incipient spreading centre

    Holocene deglaciation and glacier readvances on the Fildes Peninsula and King George Island (Isla 25 de Mayo), South Shetland Islands, NW Antarctic Peninsula

    Get PDF
    To provide insights into glacier-climate dynamics of the South Shetland Islands (SSI), NW Antarctic Peninsula, we present a new deglaciation and readvance model for the Bellingshausen Ice Cap (BIC) on Fildes Peninsula and for King George Island/Isla 25 de Mayo (KGI) ~62°S. Deglaciation on KGI began after c. 15 ka cal BP and had progressed to within present-day limits on the Fildes Peninsula, its largest ice-free peninsula, by c. 6.6–5.3 ka cal BP. Probability density phase analysis of chronological data constraining Holocene glacier advances on KGI revealed up to eight 95% probability ‘gaps’ during which readvances could have occurred. These are grouped into four stages – Stage 1: a readvance and marine transgression, well-constrained by field data, between c. 7.4–6.6 ka cal BP; Stage 2: four probability ‘gaps’, less well-constrained by field data, between c. 5.3–2.2 ka cal BP; Stage 3: a well-constrained but restricted ‘readvance’ between c. 1.7–1.5 ka; Stage 4: two further minor ‘readvances’, one less well-constrained by field data between c. 1.3–0.7 ka cal BP (68% probability), and a ‘final’ well-constrained ‘readvance’ after 1950 CE) is associated with recent warming/more positive SAM-like conditions

    Coxiella burnetii Phagocytosis Is Regulated by GTPases of the Rho Family and the RhoA Effectors mDia1 and ROCK

    Get PDF
    The GTPases belonging to the Rho family control the actin cytoskeleton rearrangements needed for particle internalization during phagocytosis. ROCK and mDia1 are downstream effectors of RhoA, a GTPase involved in that process. Coxiella burnetii, the etiologic agent of Q fever, is internalized by the hostÂŽs cells in an actin-dependent manner. Nevertheless, the molecular mechanism involved in this process has been poorly characterized. This work analyzes the role of different GTPases of the Rho family and some downstream effectors in the internalization of C. burnetii by phagocytic and non-phagocytic cells. The internalization of C. burnetii into HeLa and RAW cells was significantly inhibited when the cells were treated with Clostridium difficile Toxin B which irreversibly inactivates members of the Rho family. In addition, the internalization was reduced in HeLa cells that overexpressed the dominant negative mutants of RhoA, Rac1 or Cdc42 or that were knocked down for the Rho GTPases. The pharmacological inhibition or the knocking down of ROCK diminished bacterium internalization. Moreover, C. burnetii was less efficiently internalized in HeLa cells overexpressing mDia1-N1, a dominant negative mutant of mDia1, while the overexpression of the constitutively active mutant mDia1-ΔN3 increased bacteria uptake. Interestingly, when HeLa and RAW cells were infected, RhoA, Rac1 and mDia1 were recruited to membrane cell fractions. Our results suggest that the GTPases of the Rho family play an important role in C. burnetii phagocytosis in both HeLa and RAW cells. Additionally, we present evidence that ROCK and mDia1, which are downstream effectors of RhoA, are involved in that processFil: Salinas Ojeda, Romina Paola. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas MĂ©dicas. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Ortiz Flores, Rodolfo Matias. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas MĂ©dicas. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Distel, JesĂșs SebastiĂĄn. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas MĂ©dicas. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Aguilera, Milton Osmar. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas MĂ©dicas. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Colombo, Maria Isabel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas MĂ©dicas. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Beron, Walter. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas MĂ©dicas. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos; Argentin

    Towards the clinical implementation of pharmacogenetics in bipolar disorder.

    Get PDF
    BackgroundBipolar disorder (BD) is a psychiatric illness defined by pathological alterations between the mood states of mania and depression, causing disability, imposing healthcare costs and elevating the risk of suicide. Although effective treatments for BD exist, variability in outcomes leads to a large number of treatment failures, typically followed by a trial and error process of medication switches that can take years. Pharmacogenetic testing (PGT), by tailoring drug choice to an individual, may personalize and expedite treatment so as to identify more rapidly medications well suited to individual BD patients.DiscussionA number of associations have been made in BD between medication response phenotypes and specific genetic markers. However, to date clinical adoption of PGT has been limited, often citing questions that must be answered before it can be widely utilized. These include: What are the requirements of supporting evidence? How large is a clinically relevant effect? What degree of specificity and sensitivity are required? Does a given marker influence decision making and have clinical utility? In many cases, the answers to these questions remain unknown, and ultimately, the question of whether PGT is valid and useful must be determined empirically. Towards this aim, we have reviewed the literature and selected drug-genotype associations with the strongest evidence for utility in BD.SummaryBased upon these findings, we propose a preliminary panel for use in PGT, and a method by which the results of a PGT panel can be integrated for clinical interpretation. Finally, we argue that based on the sufficiency of accumulated evidence, PGT implementation studies are now warranted. We propose and discuss the design for a randomized clinical trial to test the use of PGT in the treatment of BD

    Will Patients Benefit from Regionalization of Gynecologic Cancer Care?

    Get PDF
    OBJECTIVE: Patient chances for cure and palliation for a variety of malignancies may be greatly affected by the care provided by a treating hospital. We sought to determine the effect of volume and teaching status on patient outcomes for five gynecologic malignancies: endometrial, cervical, ovarian and vulvar carcinoma and uterine sarcoma. METHODS: The Florida Cancer Data System dataset was queried for all patients undergoing treatment for gynecologic cancers from 1990-2000. RESULTS: Overall, 48,981 patients with gynecologic malignancies were identified. Endometrial tumors were the most common, representing 43.2% of the entire cohort, followed by ovarian cancer (30.9%), cervical cancer (20.8%), vulvar cancer (4.6%), and uterine sarcoma (0.5%). By univariate analysis, although patients treated at high volume centers (HVC) were significantly younger, they benefited from an improved short-term (30-day and/or 90-day) survival for cervical, ovarian and endometrial cancers. Multivariate analysis (MVA), however, failed to demonstrate significant survival benefit for gynecologic cancer patients treated at teaching facilities (TF) or HVC. Significant prognostic factors at presentation by MVA were age over 65 (HR = 2.6, p<0.01), African-American race (HR = 1.36, p<0.01), and advanced stage (regional HR = 2.08, p<0.01; advanced HR = 3.82, p<0.01, respectively). Surgery and use of chemotherapy were each significantly associated with improved survival. CONCLUSION: No difference in patient survival was observed for any gynecologic malignancy based upon treating hospital teaching or volume status. Although instances of improved outcomes may occur, overall further regionalization would not appear to significantly improve patient survival

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentre−of−massframeisusedtosuppressthelargemulti−jetbackground.Thecross−sectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  Όb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∌0) correlation that grows rapidly with increasing ÎŁETPb. A long-range “away-side” (Δϕ∌π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ÎŁETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁥2Δϕ modulation for all ÎŁETPb ranges and particle pT
    • 

    corecore