104 research outputs found

    Performance of the QuickVue Influenza A+B Rapid Test for Pandemic H1N1 (2009) Virus Infection in Adults

    Get PDF
    To investigate the diagnostic accuracy of the QuickVue® Influenza A+B rapid test we conducted a prospective observational study in which this rapid test was compared with a real-time reverse transcription polymerase chain reaction (RT-PCR) for pandemic influenza A H1N1 (2009) infection in Austrian adults. The sensitivity, specificity, and positive and negative predictive values of the QuickVue test compared with the RT-PCR were 26% (95% CI 18–35), 98% (95% CI 92–100), 94% (95% CI 80–99) and 50% (95% CI 42–58), respectively. The prevalence of pandemic H1N1 (2009) virus infection among the 209 patients included in the study was 57%. Our data suggest that a positive QuickVue test provides considerable information for the diagnosis of pandemic influenza A H1N1 (2009) virus infection in young adults but that a negative QuickVue test result should, if relevant for patient management or public health measures, be verified using PCR

    Overlay of conventional angiographic and en-face OCT images enhances their interpretation

    Get PDF
    BACKGROUND: Combining characteristic morphological and functional information in one image increases pathophysiologic understanding as well as diagnostic accuracy in most clinical settings. En-face optical coherence tomography (OCT) provides a high resolution, transversal OCT image of the macular area combined with a confocal image of the same area (OCT C-scans). Creating an overlay image of a conventional angiographic image onto an OCT image, using the confocal part to facilitate transformation, combines structural and functional information of the retinal area of interest. This paper describes the construction of such overlay images and their aid in improving the interpretation of OCT C-scans. METHODS: In various patients, en-face OCT C-scans (made with a prototype OCT-Ophthalmoscope (OTI, Canada) in use at the Department of Ophthalmology (Academic Medical Centre, Amsterdam, The Netherlands)) and conventional fluorescein angiography (FA) were performed. ImagePro, with a custom made plug-in, was used to make an overlay-image. The confocal part of the OCT C-scan was used to spatially transform the FA image onto the OCT C-scan, using the vascular arcades as a reference. To facilitate visualization the transformed angiographic image and the OCT C-scan were combined in an RGB image. RESULTS: The confocal part of the OCT C-scan could easily be fused with angiographic images. Overlay showed a direct correspondence between retinal thickening and FA leakage in Birdshot retinochoroiditis, localized the subretinal neovascular membrane and correlated anatomic and vascular leakage features in myopia, and showed the extent of retinal and pigment epithelial detachment in retinal angiomatous proliferation as FA leakage was subject to blocked fluorescence. The overlay mode provided additional insight not readily available in either mode alone. CONCLUSION: Combining conventional angiographic images and en-face OCT C-scans assists in the interpretation of both imaging modalities. By combining the physiopathological information in the angiograms with the structural information in the OCT scan, zones of leakage can be correlated to structural changes in the retina or pigment epithelium. This strategy could be used in the evaluation and monitoring of patients with complex central macular pathology

    Tenascin-C induces inflammatory mediators and matrix degradation in osteoarthritic cartilage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tenascin-C (TN-C) is an extracellular matrix glycoprotein that is involved in tissue injury and repair processes. We analyzed TN-C expression in normal and osteoarthritic (OA) human cartilage, and evaluated its capacity to induce inflammatory and catabolic mediators in chondrocytes <it>in vitro</it>. The effect of TN-C on proteoglycan loss from articular cartilage in culture was also assessed.</p> <p>Methods</p> <p>TN-C in culture media, cartilage extracts, and synovial fluid of human and animal joints was quantified using a sandwich ELISA and/or analyzed by Western immunoblotting. mRNA expression of TN-C and aggrecanases were analyzed by Taqman assays. Human and bovine primary chondrocytes and/or explant culture systems were utilized to study TN-C induced inflammatory or catabolic mediators and proteoglycan loss. Total proteoglycan and aggrecanase -generated ARG-aggrecan fragments were quantified in human and rat synovial fluids by ELISA.</p> <p>Results</p> <p>TN-C protein and mRNA expression were significantly upregulated in OA cartilage with a concomitant elevation of TN-C levels in the synovial fluid of OA patients. IL-1 enhanced TN-C expression in articular cartilage. Addition of TN-C induced IL-6, PGE<sub>2</sub>, and nitrate release and upregulated ADAMTS4 mRNA in cultured primary human and bovine chondrocytes. TN-C treatment resulted in an increased loss of proteoglycan from cartilage explants in culture. A correlation was observed between TN-C and aggrecanase generated ARG-aggrecan fragment levels in the synovial fluid of human OA joints and in the lavage of rat joints that underwent surgical induction of OA.</p> <p>Conclusions</p> <p>TN-C expression in the knee cartilage and TN-C levels measured in the synovial fluid are significantly enhanced in OA patients. Our findings suggest that the elevated levels of TN-C could induce inflammatory mediators and promote matrix degradation in OA joints.</p

    What scans we will read: imaging instrumentation trends in clinical oncology

    Get PDF
    Oncological diseases account for a significant portion of the burden on public healthcare systems with associated costs driven primarily by complex and long-lasting therapies. Through the visualization of patient-specific morphology and functional-molecular pathways, cancerous tissue can be detected and characterized non- invasively, so as to provide referring oncologists with essential information to support therapy management decisions. Following the onset of stand-alone anatomical and functional imaging, we witness a push towards integrating molecular image information through various methods, including anato-metabolic imaging (e.g., PET/ CT), advanced MRI, optical or ultrasound imaging. This perspective paper highlights a number of key technological and methodological advances in imaging instrumentation related to anatomical, functional, molecular medicine and hybrid imaging, that is understood as the hardware-based combination of complementary anatomical and molecular imaging. These include novel detector technologies for ionizing radiation used in CT and nuclear medicine imaging, and novel system developments in MRI and optical as well as opto-acoustic imaging. We will also highlight new data processing methods for improved non-invasive tissue characterization. Following a general introduction to the role of imaging in oncology patient management we introduce imaging methods with well-defined clinical applications and potential for clinical translation. For each modality, we report first on the status quo and point to perceived technological and methodological advances in a subsequent status go section. Considering the breadth and dynamics of these developments, this perspective ends with a critical reflection on where the authors, with the majority of them being imaging experts with a background in physics and engineering, believe imaging methods will be in a few years from now. Overall, methodological and technological medical imaging advances are geared towards increased image contrast, the derivation of reproducible quantitative parameters, an increase in volume sensitivity and a reduction in overall examination time. To ensure full translation to the clinic, this progress in technologies and instrumentation is complemented by progress in relevant acquisition and image-processing protocols and improved data analysis. To this end, we should accept diagnostic images as “data”, and – through the wider adoption of advanced analysis, including machine learning approaches and a “big data” concept – move to the next stage of non-invasive tumor phenotyping. The scans we will be reading in 10 years from now will likely be composed of highly diverse multi- dimensional data from multiple sources, which mandate the use of advanced and interactive visualization and analysis platforms powered by Artificial Intelligence (AI) for real-time data handling by cross-specialty clinical experts with a domain knowledge that will need to go beyond that of plain imaging

    Clioquinol and pyrrolidine dithiocarbamate complex with copper to form proteasome inhibitors and apoptosis inducers in human breast cancer cells

    Get PDF
    INTRODUCTION: A physiological feature of many tumor tissues and cells is the tendency to accumulate high concentrations of copper. While the precise role of copper in tumors is cryptic, copper, but not other trace metals, is required for angiogenesis. We have recently reported that organic copper-containing compounds, including 8-hydroxyquinoline-copper(II) and 5,7-dichloro-8-hydroxyquinoline-copper(II), comprise a novel class of proteasome inhibitors and tumor cell apoptosis inducers. In the current study, we investigate whether clioquinol (CQ), an analog of 8-hydroxyquinoline and an Alzheimer's disease drug, and pyrrolidine dithiocarbamate (PDTC), a known copper-binding compound and antioxidant, can interact with copper to form cancer-specific proteasome inhibitors and apoptosis inducers in human breast cancer cells. Tetrathiomolybdate (TM), a strong copper chelator currently being tested in clinical trials, is used as a comparison. METHODS: Breast cell lines, normal, immortalized MCF-10A, premalignant MCF10AT1K.cl2, and malignant MCF10DCIS.com and MDA-MB-231, were treated with CQ or PDTC with or without prior interaction with copper, followed by measurement of proteasome inhibition and cell death. Inhibition of the proteasome was determined by levels of the proteasomal chymotrypsin-like activity and ubiquitinated proteins in protein extracts of the treated cells. Apoptotic cell death was measured by morphological changes, Hoechst staining, and poly(ADP-ribose) polymerase cleavage. RESULTS: When in complex with copper, both CQ and PDTC, but not TM, can inhibit the proteasome chymotrypsin-like activity, block proliferation, and induce apoptotic cell death preferentially in breast cancer cells, less in premalignant breast cells, but are non-toxic to normal/non-transformed breast cells at the concentrations tested. In contrast, CQ, PDTC, TM or copper alone had no effects on any of the cells. Breast premalignant or cancer cells that contain copper at concentrations similar to those found in patients, when treated with just CQ or PDTC alone, but not TM, undergo proteasome inhibition and apoptosis. CONCLUSION: The feature of breast cancer cells and tissues to accumulate copper can be used as a targeting method for anticancer therapy through treatment with novel compounds such as CQ and PDTC that become active proteasome inhibitors and breast cancer cell killers in the presence of copper
    • …
    corecore