13 research outputs found
Circular Polarization Vision of Scarab Beetles
International audienceIn this chapter the occurrence of circularly polarized (CP) light in nature (both in the abiotic and biotic optical environment) is surveyed. We deal with the reason and the possible adaptive significance of CP light reflected from the exocuticle of many beetle species belonging to the Scarabaeoidea. This unique feature of the insect exocuticle seems to have evolved only in scarabaeoids. The imaging polarimetry of circularly polarizing scarab beetles and its results are reviewed. The alleged CP sensitivity in Chrysina gloriosa scarabs is briefly discussed. Finally, the experimental evidence for the lack of CP vision in the scarab species Anomala dubia, A. vitis (Coleoptera, Scarabaeidae, Rutelinae), Cetonia aurata, and Protaetia cuprea (Coleoptera, Scarabaeidae, Cetoniinae) with circularly polarizing exocuticle is presented
Light-dependent dynamics of gap junctions between horizontal cells in the retina of the crucian carp
Polarisation signals
Humans are fascinated by the colour vision, colour signals and ‘dress codes’ of other animals as we can see colour. This property of light may be useful for increasing the contrast of objects during foraging, defence, camouflage and sexual communication. New research, largely from the last decade, now suggests that polarisation is a quality of light also used in signalling and may contain information at least as rich as colour. As many of the chapters in this book detail, polarisation in animals is often associated with navigation, habitat choice and other tasks that require large-field processing. That is, a wide area of the light field, such as the celestial hemisphere, is sampled from. Polarisation vision that recognises and extracts information from objects is most likely confined to processing through small numbers of receptors. This chapter examines the latest evidence on polarised signals from animals and their environments, including both linear and circular polarisations. Both aquatic and terrestrial examples are detailed, but with emphasis on life underwater as it is here that many recent discoveries have been made. Behaviour relative to signals is described where known, and suggestions are given as to how these signals are received and processed by the visual system. Camouflage as well as signalling in this light domain is also considered, with the inevitable conclusion for this new field that we need to know more before solid conclusions can be drawn