13 research outputs found

    Gene expression in fungi

    Get PDF
    This contribution is based on the four presentations made at the Special Interest Group (SIG) meeting titled Gene Expression in Fungi held during IMC9 in Edinburgh. This overview is independent from other articles published or that will be published by each speaker. In the SIG meeting, basic principles of in vivo animal models for virulence studies were discussed. Infection associated genes of Candida albicans and fungal adaptation to the host was summarized. Azole susceptibility was evaluated as a combined result of several changes in expression of pertinent genes. Gene transfer in fungi, resulting in fungal evolution and gene adaptation to environmental factors, was reported

    Microbiological characteristics of clinical isolates of Cryptococcus spp. in Bahia, Brazil: molecular types and antifungal susceptibilities

    Get PDF
    To determine the profiles of susceptibility to antifungal and the genotypes of clinical isolates of Cryptococcus in Bahia, Brazil, 62 isolates were collected from cases of meningitis in the period from 2006 to 2010. Their susceptibilities to fluconazole, itraconazole, amphotericin B and 5-flucytosine were determined by the broth microdilution technique described by the Clinical and Laboratory Standards Institute and genotyping of the URA5 gene was accomplished by restriction fragment length polymorphism. C. neoformans accounted for 79% of the identified yeast and C. gattii represented the remaining 21%. Evaluation of the genotypes determined that 100% of the C. gattii isolates belong to the VGII genotype, and 98% of the C. neoformans isolates belong to the VNI genotype. Determination of susceptibility revealed isolates resistant to fluconazole (4.8%), 5-flucytosine (1.6%) and amphotericin B (3.2%); the stratification of sensitivity results for each species showed significant differences in susceptibility to azoles. This study is the first to describe the susceptibility profiles of molecular and clinical isolates of Cryptococcus in Bahia, Brazil. The high percentage of C. gattii isolates belonging to the VGII genotype and its lower susceptibility to antifungal agents highlight the importance of knowing which species are involved in cryptococcal infections in northeastern Brazil

    Self-Mating in the Definitive Host Potentiates Clonal Outbreaks of the Apicomplexan Parasites Sarcocystis neurona and Toxoplasma gondii

    Get PDF
    Tissue-encysting coccidia, including Toxoplasma gondii and Sarcocystis neurona, are heterogamous parasites with sexual and asexual life stages in definitive and intermediate hosts, respectively. During its sexual life stage, T. gondii reproduces either by genetic out-crossing or via clonal amplification of a single strain through self-mating. Out-crossing has been experimentally verified as a potent mechanism capable of producing offspring possessing a range of adaptive and virulence potentials. In contrast, selfing and other life history traits, such as asexual expansion of tissue-cysts by oral transmission among intermediate hosts, have been proposed to explain the genetic basis for the clonal population structure of T. gondii. In this study, we investigated the contributing roles self-mating and sexual recombination play in nature to maintain clonal population structures and produce or expand parasite clones capable of causing disease epidemics for two tissue encysting parasites. We applied high-resolution genotyping against strains isolated from a T. gondii waterborne outbreak that caused symptomatic disease in 155 immune-competent people in Brazil and a S. neurona outbreak that resulted in a mass mortality event in Southern sea otters. In both cases, a single, genetically distinct clone was found infecting outbreak-exposed individuals. Furthermore, the T. gondii outbreak clone was one of several apparently recombinant progeny recovered from the local environment. Since oocysts or sporocysts were the infectious form implicated in each outbreak, the expansion of the epidemic clone can be explained by self-mating. The results also show that out-crossing preceded selfing to produce the virulent T. gondii clone. For the tissue encysting coccidia, self-mating exists as a key adaptation potentiating the epidemic expansion and transmission of newly emerged parasite clones that can profoundly shape parasite population genetic structures or cause devastating disease outbreaks
    corecore