10 research outputs found

    Ly49A inhibitory receptors redistribute on natural killer cells during target cell interaction

    No full text
    When T effector cells meet antigen-bearing target cells, there is a specific accumulation of T-cell receptors, co-receptors and structural proteins at the point of cell–cell contact. Ly49 inhibitory receptors bind to murine major histocompatibility complex (MHC) class I molecules and prevent natural killer-(NK) cell cytotoxicity. In this study we have tested whether inhibitory receptors accumulate at the point of cell–cell contact when NK cells encounter target cells bearing MHC class I ligands for those inhibitory receptors. We have used RNK-16 effector cells that express Ly49A receptors and have found that there was a specific accumulation of Ly49A receptors at the point of NK cell–target cell contact when the target cells expressed H-2Dd. We also observed that engagement of Ly49A on NK cells resulted in an altered redistribution of potential triggering receptors CD2 and NKR-P1. These data indicate that inhibitory receptors, like activating receptors, may specifically aggregate at the point of cell–cell contact which may be necessary for them to mediate their full inhibitory effect

    Integrin-mediated Tyrosine Phosphorylation of Shc in T Cells Is Regulated by Protein Kinase C-dependent Phosphorylations of Lck

    No full text
    Integrin receptor signals are costimulatory for mitogenesis with the T-cell receptor during T-cell activation. A subset of integrin receptors can link to the adapter protein Shc and provide a mitogenic stimulus. Using a combination of genetic and pharmacological approaches, we show herein that integrin signaling to Shc in T cells requires the receptor tyrosine phosphatase CD45, the Src family kinase member Lck, and protein kinase C. Our results suggest a model in which integrin-dependent serine phosphorylation of Lck is the critical step that determines the efficiency of Shc tyrosine phosphorylation in T cells. Serine phosphorylation of Lck is dependent on PKC and is also linked to CD45 dephosphorylation. Mutants of Lck that cannot be phosphorylated on the critical serine residues do not signal efficiently to Shc and have greatly reduced kinase activity. This signaling from integrins to Lck may be an important step in the costimulation with the T-cell receptor during lymphocyte activation

    Cracking the Green Paradigm: Functional Coding of Phosphoinositide Signals in Plant Stress Responses

    No full text
    corecore