3 research outputs found

    Exploring the Membrane Mechanism of the Bioactive Peptaibol Ampullosporin A Using Lipid Monolayers and Supported Biomimetic Membranes

    Get PDF
    Ampullosporin A is an antimicrobial, neuroleptic peptaibol, the behavior of which was investigated in different membrane mimetic environments made of egg yolk L-α-phosphatidylcholine. In monolayers, the peptaibol adopted a mixed α/310-helical structure with an in-plane orientation. The binding step was followed by the peptide insertion into the lipid monolayer core. The relevance of the inner lipid leaflet nature was studied by comparing ampullosporin binding on a hybrid bilayer, in which this leaflet was a rigid alkane layer, and on supported fluid lipid bilayers. The membrane binding was examined by surface plasmon resonance spectroscopy and the effect on lipid dynamics was explored using fluorescence recovery after photobleaching. In the absence of voltage and at low concentration, ampullosporin A substantially adsorbed onto lipid surfaces and its interaction with biomimetic models was strongly modified depending on the inner leaflet structure. At high concentration, ampullosporin A addition led to the lipid bilayers disruption

    Hypersensitive-like response to the Pore-Former Peptaibol Alamethicin in Arabidopsis thaliana

    No full text
    International audienceIn Arabidopsis thaliana cell cultures, the peptaibol alamethicin induced a form of active cell death that was associated with cell shrinkage and DNA fragmentation. The transfer of mature A. thaliana plants from a peptide-free medium to a medium containing a moderate concentration of alamethicin caused the development of lesions in leaves after a few days. These lesions were characterized by cell death, deposition of callose, production of autofluorescent phenolic compounds, and transcription of defense genes, just like in the hypersensitive response to a pathogen attack. The induction of defense-like responses in Arabidopsis by other membrane-disrupting peptides was also evaluated. The peptides selected for comparison included the natural antimicrobial melittin and the peptaibol ampullosporin A, as well as synthetic analogues of the peptaibols cervinin and trichogin. The response amplitude in A. thaliana increased with the peptaibol's ability to permeabilize biological membranes through a pore-forming mechanism and was strongly associated with their content in the helicogenic α-aminoisobutyric acid residue
    corecore