16 research outputs found

    Investigation of the erosive potential of sour novelty sweets

    Get PDF
    Provides a background about the link between acidic beverages and dental erosion. Discusses the potential risk of developing dental erosion upon the frequent consumption of novelty sweets. Provides information which could be used by dental personnel in counselling patients who consume novelty sweets or at risk of developing dental erosion. Abstract Background The expansion of the novelty sweets market in the UK has major potential public health implications in children and young adults as they may cause dental erosion. Objective To investigate the erosive potential of the novelty sweets in term of their physiochemical properties and amount of enamel loss. Subjects and methods The pH of a variety of novelty sweets was tested in vitro using a pH meter and the neutralisable acidity was assessed by titrating the sweets against 0.1M NaOH. The viscosity of the novelty sweets was measured using a rotational viscometer. The wettability of enamel by each sweet was measured using dynamic contact angle analyser. Enamel loss was assessed using contact profilometry. Results The pH ranged from 1.8–3.2, the neutralisable acidity ranged from 9–201 ml of 0.1 NaOH. The viscosity of the novelty sweets that come in liquid form ranged from 2–594 mPa s. The surface enamel erosion ranged from 1.95–15.77 μm and from 2.5–17.6 μm with and without immersing in saliva for 1 hour before immersing in acidic solution respectively. The amount of subsurface enamel loss was ranged from 0.75 to 2.3 μm following ultrasonication at 0 min of acidic attack and from 0.23 to 0.85 μm at 60 minutes of acidic attack while immersed in saliva. The contact angle between enamel surface and four sweet was less than the angle formed between the orange juice and the enamel which caused more wettability of enamel. Conclusion The pH is lower than the critical value for enamel erosion (5.5), high neutralisable acidity and high sugar content strongly suggest that these sweets may cause significant amount of dental erosion clinically. In addition, the degree of wettability of enamel by solution is an important factor to consider in determining the enamel loss caused by acidic solution. Immediate tooth brushing would cause further enamel loss as a result of the mechanical removal of softened enamel. However, it has been suggested that postponing brushing after erosive attack should be reconsidered

    Numerical Investigation of the Fredholm Integral Equations with Oscillatory Kernels Based on Compactly Supported Radial Basis Functions

    No full text
    The integral equations with oscillatory kernels are of great concern in applied sciences and computational engineering, particularly for large-scale data points and high frequencies. Therefore, the interest of this work is to develop an accurate, efficient, and stable algorithm for the computation of the Fredholm integral equations (FIEs) with the oscillatory kernel. The oscillatory part of the FIEs is evaluated by the Levin quadrature coupled with a compactly supported radial basis function (CS-RBF). The algorithm exhibits sparse and well-conditioned matrix even for large-scale data points, as compared to its counterpart, multi-quadric radial basis function (MQ-RBF) coupled with the Levin quadrature. Usually, the RBFs behave with spherical symmetry about the centers, known as radial. The comparison of convergence and stability analysis of both types of RBFs are performed and numerically verified. The proposed algorithm is tested with benchmark problems and compared with the counterpart methods in the literature. It is concluded that the algorithm in this work is accurate, robust, and stable than the existing methods in the literature based on MQ-RBF and the Chebyshev interpolation matrix
    corecore