98 research outputs found

    Maximum tumor diameter is associated with event-free survival in PET-negative patients with stage I/IIA Hodgkin lymphoma.

    Get PDF
    Introduction: the high cure rates achieved in early-stage (ES) Hodgkin lymphoma (HL) are one of the great successes of hemato-oncology, but late treatment-related toxicity undermines long-term survival. Improving overall survival and quality of life further will require maintaining disease control while potentially de-escalating chemotherapy and/or omitting radiotherapy to reduce late toxicity. Accurate stratification of patients is required to facilitate individualized treatment approaches. Response assessment using 18F-fluorodeoxyglucose positron emission tomography (PET) is a powerful predictor of outcome in HL,1,2 and has been used in multiple studies, including the United Kingdom National Cancer Research Institute Randomised Phase III Trial to Determine the Role of FDG–PET Imaging in Clinical Stages IA/IIA Hodgkin’s Disease (UK NCRI RAPID) trial, to investigate whether patients achieving complete metabolic remission (CMR) can be treated with chemotherapy alone.3-5 These PET-adapted trials have demonstrated that omitting radiotherapy results in higher relapse rates, but without compromising overall survival.3-5 For the 75% of patients who achieved CMR in RAPID, neither baseline clinical risk stratification (favorable/unfavorable) nor PET (Deauville score 1/2) predicted disease relapse; additional biomarkers are needed.1 Tumor bulk has long been recognized as prognostic in HL,1,6 but there remains uncertainty about the significance and definition of bulk in the era of PET-adapted treatment.7 We performed a subsidiary analysis of RAPID to assess the prognostic value of baseline maximum tumor dimension (MTD) in patients achieving CMR. Methods: ee have previously reported the RAPID trial design, primary results, and outcomes according to pretreatment risk stratification and PET score.1,3 Patients were aged 16 to 75 years with untreated ES-HL and without B-symptoms or mediastinal bulk (mass > 1/3 internal mediastinal diameter at T5/6).6 Metabolic response after 3 cycles of ABVD chemotherapy (doxorubicin, bleomycin, vinblastine, and dacarbazine) was centrally assessed using PET (N = 562). Patients with CMR (ie, Deauville score 1-2) were randomly assigned to receive involved field radiotherapy (IFRT; n = 208) or no further therapy (NFT; n = 211). PET-positive patients (score, 3-5; n = 143) received a fourth cycle of ABVD and IFRT. Baseline disease assessment was performed by computed tomography, and bidimensional target lesion measurements were reported by local radiologists in millimeters. The association of baseline MTD with HL-related event-free survival (EFS: progression or HL-related death) and progression-free survival (PFS) (progression or any-cause death) was assessed using Kaplan-Meier and Cox regression analyses. Non-HL deaths were either related to primary treatment toxicity or occurred in HL remission.1 United Kingdom ethical approval for the RAPID trial was via the UK Multicentre Research ethics committee. Results and discussion: baseline patient characteristics have been previously described.1 Median age was 34 years (range, 16-75 years); 184 (37.4%) of 492 patients had unfavorable risk by European Organisation for Research and Treatment of Cancer criteria, and 155 (32.3%) of 480 by German Hodgkin Study Groupcriteria. Median MTD for patients achieving CMR was 3.0 cm (interquartile range, 2.0-4.0 cm) and 3.0 cm (interquartile range, 1.8-4.5 cm) in the NFT and IFRT groups, respectively, whereas PET-positive patients had a median MTD of 3.9 cm (interquartile range, 2.8-5.1 cm). After a median follow-up of 61.6 m, 44 HL progression events occurred: 21 NFT, 9 IFRT and 14 PET-positive. No patient received salvage treatment without documented progression. Only 5 HL-related deaths occurred (1 IFRT, 4 PET-positive), and 12 non-HL deaths (4 NFT, 6 IFRT, 2 PET-positive).1 For patients with CMR (N = 419), there was a strong association between MTD and EFS (hazard ratio [HR], 1.19; 95% confidence interval [CI], 1.02-1.39; P = .02), adjusting for treatment group, with an approximate 19% increase in HL risk per centimeter increase in MTD. The association was similar in both treatment groups (NFT HR, 1.20 [95% CI, 0.99-1.44; P = .06]; IFRT HR, 1.19 [95% CI, 0.92-1.55; P = .19]). The observed effect sizes did not markedly change after adjusting for baseline clinical risk factors, and similar results were observed for PFS (supplemental Table 1). In contrast, for PET-positive patients, there was no association between MTD and EFS (HR, 0.88; 95% CI, 0.70-1.11; P = .29) or PFS (HR, 0.87; 95% CI, 0.70-1.08; P = .21). In an exploratory analysis within the NFT group, MTD was dichotomized using increasing 1-cm intervals to investigate the relationship between MTD thresholds and EFS. The largest effect size was observed with an MTD threshold of ≥5 cm (Table 1). Similar results were observed for PFS; this threshold also performed best in time-dependent receiver operating characteristic curve analyses. It was not possible to assess MTD thresholds in the IFRT group with only 9 events. Among all randomized patients, 79 (18.9%) had MTD of ≥5 cm, the majority with mediastinal (n = 43), supraclavicular (n = 17), or cervical (n = 16) locations. Five-year EFS for patients with MTD of ≥5 cm randomly assigned to NFT and IFRT was 79.3% (n = 39; 95% CI, 66.6%-92.0%) and 94.9% (n = 40; 95% CI, 88.0%-100%), respectively (P = .03; Figure 1)

    Positron Emission Tomography Score Has Greater Prognostic Significance Than Pretreatment Risk Stratification in Early-Stage Hodgkin Lymphoma in the UK RAPID Study.

    Get PDF
    PURPOSE: Accurate stratification of patients is an important goal in Hodgkin lymphoma (HL), but the role of pretreatment clinical risk stratification in the context of positron emission tomography (PET) -adapted treatment is unclear. We performed a subsidiary analysis of the RAPID trial to assess the prognostic value of pretreatment risk factors and PET score in determining outcomes. PATIENTS AND METHODS: Patients with stage IA to IIA HL and no mediastinal bulk underwent PET assessment after three cycles of doxorubicin, bleomycin, vinblastine, and dacarbazine; 143 PET-positive patients (PET score, 3 to 5) received a fourth doxorubicin, bleomycin, vinblastine, and dacarbazine cycle and involved-field radiotherapy, and 419 patients in complete metabolic remission were randomly assigned to receive involved-field radiotherapy (n = 208) or no additional treatment (n = 211). Cox regression was used to investigate the association between PET score and pretreatment risk factors with HL-specific event-free survival (EFS). RESULTS: High PET score was associated with inferior EFS, before (P .4). CONCLUSION: In RAPID, a positive PET scan did not carry uniform prognostic weight; only a PET score of 5 was associated with inferior outcomes. This suggests that in future trials involving patients without B symptoms or mediastinal bulk, a score of 5 rather than a positive PET result should be used to guide treatment escalation in early-stage HL

    Favourable outcomes for high-risk diffuse large B-cell lymphoma (IPI 3–5) treated with front-line R-CODOX-M/R-IVAC chemotherapy: results of a phase 2 UK NCRI trial

    Get PDF
    Background: Outcomes for patients with high-risk diffuse large B-cell lymphoma (DLBCL) treated with R-CHOP chemotherapy are suboptimal but, to date, no alternative regimen has been shown to improve survival rates. This phase 2 trial aimed to assess the efficacy of a Burkitt-like approach for high-risk DLBCL using the dose-intense R-CODOX-M/R-IVAC regimen. / Patients and methods: Eligible patients were aged 18–65 years with stage II–IV untreated DLBCL and an International Prognostic Index (IPI) score of 3–5. Patients received alternating cycles of CODOX-M (cyclophosphamide, vincristine, doxorubicin and high-dose methotrexate) alternating with IVAC chemotherapy (ifosfamide, etoposide and high-dose cytarabine) plus eight doses of rituximab. Response was assessed by computed tomography after completing all four cycles of chemotherapy. The primary end point was 2-year progression-free survival (PFS). / Results: A total of 111 eligible patients were registered; median age was 50 years, IPI score was 3 (60.4%) or 4/5 (39.6%), 54% had a performance status ≥2 and 9% had central nervous system involvement. A total of 85 patients (76.6%) completed all four cycles of chemotherapy. There were five treatment-related deaths (4.3%), all in patients with performance status of 3 and aged >50 years. Two-year PFS for the whole cohort was 67.9% [90% confidence interval (CI) 59.9–74.6] and 2-year overall survival was 76.0% (90% CI 68.5–82.0). The ability to tolerate and complete treatment was lower in patients with performance status ≥2 who were aged >50 years, where 2-year PFS was 43.5% (90% CI 27.9–58.0). / Conclusions: This trial demonstrates that R-CODOX-M/R-IVAC is a feasible and effective regimen for the treatment of younger and/or fit patients with high-risk DLBCL. These encouraging survival rates demonstrate that this regimen warrants further investigation against standard of care. / Trial Registration: ClinicalTrials.gov (NCT00974792) and EudraCT (2005-003479-19)

    Favourable outcomes for high-risk diffuse large B-cell lymphoma (IPI 3-5) treated with front-line R-CODOX-M/R-IVAC chemotherapy: results of a phase 2 UK NCRI trial.

    Get PDF
    BACKGROUND: Outcomes for patients with high-risk diffuse large B-cell lymphoma (DLBCL) treated with R-CHOP chemotherapy are suboptimal but, to date, no alternative regimen has been shown to improve survival rates. This phase 2 trial aimed to assess the efficacy of a Burkitt-like approach for high-risk DLBCL using the dose-intense R-CODOX-M/R-IVAC regimen. PATIENTS AND METHODS: Eligible patients were aged 18-65 years with stage II-IV untreated DLBCL and an International Prognostic Index (IPI) score of 3-5. Patients received alternating cycles of CODOX-M (cyclophosphamide, vincristine, doxorubicin and high-dose methotrexate) alternating with IVAC chemotherapy (ifosfamide, etoposide and high-dose cytarabine) plus eight doses of rituximab. Response was assessed by computed tomography after completing all four cycles of chemotherapy. The primary end point was 2-year progression-free survival (PFS). RESULTS: A total of 111 eligible patients were registered; median age was 50 years, IPI score was 3 (60.4%) or 4/5 (39.6%), 54% had a performance status ≥2 and 9% had central nervous system involvement. A total of 85 patients (76.6%) completed all four cycles of chemotherapy. There were five treatment-related deaths (4.3%), all in patients with performance status of 3 and aged >50 years. Two-year PFS for the whole cohort was 67.9% [90% confidence interval (CI) 59.9-74.6] and 2-year overall survival was 76.0% (90% CI 68.5-82.0). The ability to tolerate and complete treatment was lower in patients with performance status ≥2 who were aged >50 years, where 2-year PFS was 43.5% (90% CI 27.9-58.0). CONCLUSIONS: This trial demonstrates that R-CODOX-M/R-IVAC is a feasible and effective regimen for the treatment of younger and/or fit patients with high-risk DLBCL. These encouraging survival rates demonstrate that this regimen warrants further investigation against standard of care. TRIAL REGISTRATION: ClinicalTrials.gov (NCT00974792) and EudraCT (2005-003479-19)

    Upfront autologous haematopoietic stem-cell transplantation versus carfilzomib–cyclophosphamide–dexamethasone consolidation with carfilzomib maintenance in patients with newly diagnosed multiple myeloma in England and Wales (CARDAMON): a randomised, phase 2, non-inferiority trial

    Get PDF
    Background: Standard-of-care treatment for patients with newly diagnosed multiple myeloma is bortezomib-based induction followed by high-dose melphalan and autologous haematopoietic stem-cell transplantation (HSCT) and lenalidomide maintenance. We aimed to evaluate whether an immunomodulatory-free carfilzomib-based induction, consolidation, and maintenance protocol without autologous HSCT was non-inferior to the same induction regimen followed by autologous HSCT and maintenance. Methods: CARDAMON is a randomised, open-label, phase 2 trial in 19 hospitals in England and Wales, UK. Newly diagnosed, transplantation-eligible patients with multiple myeloma aged 18 years or older with an Eastern Cooperative Oncology Group (ECOG) performance status of 0–2 received four 28-day cycles of carfilzomib (56 mg/m2 intravenously on days 1, 2, 8, 9, 15, and 16), cyclophosphamide (500 mg orally on days 1, 8, and 15), and dexamethasone (40 mg orally on days 1, 8, 15, and 22; KCd), followed by peripheral blood stem cell mobilisation. Patients with at least a partial response were randomly assigned (1:1) to either high-dose melphalan and autologous HSCT or four cycles of KCd. All randomised patients received 18 cycles of carfilzomib maintenance (56 mg/m2 intravenously on days 1, 8, and 15). The primary outcomes were the proportion of patients with at least a very good partial response after induction and difference in progression-free survival rate at 2 years from randomisation (non-inferiority margin 10%), both assessed by intention to treat. Safety was assessed in all patients who started treatment. The trial is registered with ClinicalTrials.gov (NCT02315716); recruitment is complete and all patients are in follow-up. Findings: Between June 16, 2015, and July 8, 2019, 281 patients were enrolled, with 218 proceeding to randomisation (109 assigned to the KCd consolidation group [99 of whom completed consolidation] and 109 to the HSCT group [104 of whom underwent transplantation]). A further seven patients withdrew before initiation of carfilzomib maintenance (two in the KCd consolidation group vs five in the HSCT group). Median age was 59 years (IQR 52 to 64); 166 (59%) of 281 patients were male and 115 (41%) were female. 152 (71%) of 214 patients with known ethnicity were White, 37 (17%) were Black, 18 (8%) were Asian, 5 (2%) identified as Mixed, and 2 (1%) identified as other. Median follow-up from randomisation was 40·2 months (IQR 32·7 to 51·8). After induction, 162 (57·7%; 95% CI 51·6 to 63·5) of 281 patients had at least a very good partial response. The 2-year progression-free survival was 75% (95% CI 65 to 82) in the HSCT group versus 68% (95% CI 58 to 76) in the KCd group (difference –7·2%, 70% CI –11·1 to –2·8), exceeding the non-inferiority margin. The most common grade 3–4 events during KCd induction and consolidation were lymphocytopenia (72 [26%] of 278 patients who started induction; 15 [14%] of 109 patients who started consolidation) and infection (50 [18%] of 278 for induction; 15 [14%] of 109 for consolidation), and during carfilzomib maintenance were hypertension (20 [21%] of 97 patients in the KCd consolidation group vs 23 [23%] of 99 patients in the HSCT group) and infection (16 [16%] of 97 patients vs 25 [25%] of 99). Treatment-related serious adverse events at any point during the trial were reported in 109 (39%) of 278 patients who started induction, with infections (80 [29%]) being the most common. Treatment-emergent deaths were reported in five (2%) of 278 patients during induction (three from infection, one from cardiac event, and one from renal failure) and one of 99 patients during maintenance after autologous HSCT (oesophageal carcinoma). Interpretation: KCd did not meet the criteria for non-inferiority compared with autologous HSCT, but the marginal difference in progression-free survival suggests that further studies are warranted to explore deferred autologous HSCT in some subgroups, such as individuals who are MRD negative after induction. Funding: Cancer Research UK and Amgen
    • …
    corecore