4 research outputs found

    Distribution of motor unit potential velocities in the biceps brachii muscle of sprinters and endurance athletes during short static contractions at low force levels.

    No full text
    In surface electromyography (sEMG), the distribution of motor unit potential (MUP) velocities has been shown to reflect the proportion of faster and slower propagating MUPs. This study investigated whether the distribution of MUP velocities could distinguish between sprinters and endurance athletes in not-specifically trained muscle (biceps brachii). sEMG results were acquired from 15 sprinters and 18 endurance athletes during short static contractions (3.8s) at three force levels: unloaded, 10% and 20% of maximum voluntary contraction. The features extracted from the sEMG were: the mean muscle conduction velocity (CV) - estimated using the inter-peak latency and the cross-correlation methods, the within-subject skewness of MUP velocities (expressing the relative proportions of faster and slower propagating MUPs), and the within-subject standard deviation of MUP velocities. Sprinters had a higher CV than endurance athletes using both methods. Sprinters also demonstrated a greater proportion of fast propagating MUPs, as indicated by the skewness. Thus, the distribution of MUP velocities was able to demonstrate physiological differences between sprinters and endurance athletes during short contractions at low forces. The findings can be extrapolated to the motor unit level. Since the investigated muscle was not involved in specific training, the differences seem to reflect inherited properties

    Distribution of motor unit potential velocities in the biceps brachii muscle of sprinters and endurance athletes during prolonged dynamic exercises at low force levels.

    No full text
    In surface electromyography (sEMG), the distribution of motor unit potential (MUP) velocities has been shown to reflect the proportion of faster and slower propagating MUPs. This study investigated whether the distribution of MUP velocities could distinguish between sprinters (n=11) and endurance athletes (n=12) in not-specifically trained muscle (biceps brachii) during prolonged dynamic exercises at low forces. sEMG was acquired during 4min' exercises: unloaded, 5%, 10% and 20% of maximal voluntary contraction (MVC). The features extracted from the sEMG were: the mean muscle conduction velocity - estimated using the inter-peak latency and cross-correlation methods, the within-subject skewness (expressing the proportions of faster and slower propagating MUPs) and the within-subject standard deviation of MUP velocities (SD-mup). Sprinters showed a greater proportion of faster propagating MUPs than endurance athletes. During fatigue, the SD-mup of sprinters broadened progressively, whereas that of endurance athletes did not. The findings suggest that sprinters conveyed a greater proportion of faster motor units than endurance athletes and that motor unit behavior during fatigue differed between groups. Thus, the distribution of MUP velocities enables distinction between a muscle of sprinters and endurance athletes during prolonged dynamic exercises at low forces

    Distribution of motor unit potential velocities in short static and prolonged dynamic contractions at low forces: use of the within-subject's skewness and standard deviation variables.

    No full text
    Behaviour of motor unit potential (MUP) velocities in relation to (low) force and duration was investigated in biceps brachii muscle using a surface electrode array. Short static tests of 3.8 s (41 subjects) and prolonged dynamic tests (prolonged tests) of 4 min (30 subjects) were performed as position tasks, applying forces up to 20% of maximal voluntary contraction (MVC). Four variables, derived from the inter-peak latency technique, were used to describe changes in the surface electromyography signal: the mean muscle fibre conduction velocity (CV), the proportion between slow and fast MUPs expressed as the within-subject skewness of MUP velocities, the within-subject standard deviation of MUP velocities [SD-peak velocity (PV)], and the amount of MUPs per second (peak frequency=PF). In short static tests and the initial phase of prolonged tests, larger forces induced an increase of the CV and PF, accompanied with the shift of MUP velocities towards higher values, whereas the SD-PV did not change. During the first 1.5-2 min of the prolonged lower force levels tests (unloaded, and loaded 5 and 10% MVC) the CV and SD-PV slightly decreased and the MUP velocities shifted towards lower values; then the three variables stabilized. The PF values did not change in these tests. However, during the prolonged higher force (20% MVC) test, the CV decreased and MUP velocities shifted towards lower values without stabilization, while the SD-PV broadened and the PF decreased progressively. It is argued that these combined results reflect changes in both neural regulatory strategies and muscle membrane state

    Fibromyalgia: A Critical and Comprehensive Review

    No full text
    corecore