439 research outputs found

    XFEM formulation with sub-interpolation, and equivalence to zero-thickness interface elements

    Get PDF
    This is the accepted version of the following article: Crusat L, Carol I, Garolera D. XFEM formulation with sub‐interpolation, and equivalence to zero‐thickness interface elements. Int J Numer Anal Methods Geomech. 2019;43:45–76. https://doi.org/10.1002/nag.2853, which has been published in final form at https://doi.org/10.1002/nag.2853This paper describes a particular formulation of the extended finite element method (XFEM) specifically conceived for application to existing discontinuities of fixed location, for instance, in geological media. The formulation is based on two nonstandard assumptions: (1) the use of sub-interpolation functions for each subdomain and (2) the use of fictitious displacement variables on the nodes across the discontinuity (instead of the more traditional jump variables). Thanks to the first of those assumptions, the proposed XFEM formulation may be shown to be equivalent to the standard finite element method with zero-thickness interface elements for the discontinuities (FEM+z). The said equivalence is theoretically proven for the case of quadrangular elements cut in two quadrangles by the discontinuity, and only approximate for other types of intersections of quadrangular or triangular elements, in which the XFEM formulation corresponds to a kinematically restricted version of the corresponding interface plus continuum scheme. The proposed XFEM formulation with sub-interpolation, also helps improving spurious oscillations of the results obtained with natural interpolation functions when the discontinuity runs skew to the mesh. A possible explanation for these oscillations is provided, which also explains the improvement observed with sub-interpolation. The paper also discusses the oscillations observed in the numerical results when some nodes are too close to the discontinuity and proposes the remedy of moving those nodes onto the discontinuity itself. All the aspects discussed are illustrated with some examples of application, the results of which are compared with closed-form analytical solutions or to existing XFEM results from the literature.Peer ReviewedPostprint (author's final draft

    Determination of the characteristic directions of lossless linear optical elements

    Full text link
    We show that the problem of finding the primary and secondary characteristic directions of a linear lossless optical element can be reformulated in terms of an eigenvalue problem related to the unimodular factor of the transfer matrix of the optical device. This formulation makes any actual computation of the characteristic directions amenable to pre-implemented numerical routines, thereby facilitating the decomposition of the transfer matrix into equivalent linear retarders and rotators according to the related Poincare equivalence theorem. The method is expected to be useful whenever the inverse problem of reconstruction of the internal state of a transparent medium from optical data obtained by tomographical methods is an issue.Comment: Replaced with extended version as published in JM

    Pion and Vector Meson Form Factors in the Kuperstein-Sonnenschein holographic model

    Full text link
    We study phenomenological aspects of the holographic model of chiral symmetry breaking recently introduced by Kuperstein and Sonnenschein (KS). As a first step, we calculate the spectrum of vector and axial-vector mesons in the KS model. We numerically compute various coupling constants of the mesons and pions. Our analysis indicates that vector meson dominance is realized in this model. The pion, vector meson and axial-vector meson form factors are obtained and studied in detail. We find good agreement with QCD results. In particular, the pion form factor closely matches available experimental data.Comment: v1: 27 pages, 9 figures, 4 tables; v2: minor changes, added more general discussion of vector meson dominance; v3: minor changes and additions, version accepted for publication in JHE

    Combined written and oral information prior to gastrointestinal endoscopy compared with oral information alone: a randomized trial

    Get PDF
    BACKGROUND: Little is known about how to most effectively deliver relevant information to patients scheduled for endoscopy. METHODS: To assess the effects of combined written and oral information, compared with oral information alone on the quality of information before endoscopy and the level of anxiety. We designed a prospective study in two Swiss teaching hospitals which enrolled consecutive patients scheduled for endoscopy over a three-month period. Patients were randomized either to receiving, along with the appointment notice, an explanatory leaflet about the upcoming examination, or to oral information delivered by each patient's doctor. Evaluation of quality of information was rated on scales between 0 (none received) and 5 (excellent). The analysis of outcome variables was performed on the basis of intention to treat-analysis. Multivariate analysis of predictors of information scores was performed by linear regression analysis. RESULTS: Of 718 eligible patients 577 (80%) returned their questionnaire. Patients who received written leaflets (N = 278) rated the quality of information they received higher than those informed verbally (N = 299), for all 8 quality-of-information items. Differences were significant regarding information about the risks of the procedure (3.24 versus 2.26, p < 0.001), how to prepare for the procedure (3.56 versus 3.23, p = 0.036), what to expect after the procedure (2.99 versus 2.59, p < 0.001), and the 8 quality-of-information items (3.35 versus 3.02, p = 0.002). The two groups reported similar levels of anxiety before procedure (p = 0.66), pain during procedure (p = 0.20), tolerability throughout the procedure (p = 0.76), problems after the procedure (p = 0.22), and overall rating of the procedure between poor and excellent (p = 0.82). CONCLUSION: Written information led to more favourable assessments of the quality of information and had no impact on patient anxiety nor on the overall assessment of the endoscopy. Because structured and comprehensive written information is perceived as beneficial by patients, gastroenterologists should clearly explain to their patients the risks, benefits and alternatives of endoscopic procedures. Trial registration: Current Controlled trial number: ISRCTN34382782

    Development of a longitudinal integrated clerkship at an academic medical center

    Get PDF
    In 2005, medical educators at the University of California, San Francisco (UCSF), began developing the Parnassus Integrated Student Clinical Experiences (PISCES) program, a year-long longitudinal integrated clerkship at its academic medical center. The principles guiding this new clerkship were continuity with faculty preceptors, patients, and peers; a developmentally progressive curriculum with an emphasis on interdisciplinary teaching; and exposure to undiagnosed illness in acute and chronic care settings. Innovative elements included quarterly student evaluation sessions with all preceptors together, peer-to-peer evaluation, and oversight advising with an assigned faculty member. PISCES launched with eight medical students for the 2007/2008 academic year and expanded to 15 students for 2008/2009. Compared to UCSF's traditional core clerkships, evaluations from PISCES indicated significantly higher student satisfaction with faculty teaching, formal didactics, direct observation of clinical skills, and feedback. Student performance on discipline-specific examinations and United States Medical Licensing Examination step 2 CK was equivalent to and on standardized patient examinations was slightly superior to that of traditional peers. Participants' career interests ranged from primary care to surgical subspecialties. These results demonstrate that a longitudinal integrated clerkship can be implemented successfully at a tertiary care academic medical center

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    PEDF and GDNF are key regulators of photoreceptor development and retinal neurogenesis in reaggregates from chick embryonic retina

    Get PDF
    Here, role(s) of pigment epithelial-derived factor (PEDF) and glial-derived neurotrophic factor (GDNF) on photoreceptor development in three-dimensional reaggregates from the retinae of the E6 chick embryo (rosetted spheroids) was investigated. Fully dispersed cells were reaggregated under serum-reduced conditions and supplemented with 50 ng/ml PEDF alone or in combination with 50 ng/ml GDNF. The spheroids were analyzed for cell growth, differentiation, and death using proliferating cell nuclear antigen, terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling, and other immunocytochemical stainings and semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) methods. PEDF strongly promoted synthesis of the messenger RNAs for blue and violet cone opsins and to a lesser extent on the red and green cone opsins. This correlated with an increase in the number of cone photoreceptors, as determined by the cone cell marker CERN906. Likewise, PEDF nearly completely inhibited rod differentiation, as detected by immunostaining with anti-rho4D2 and RT-PCR. Furthermore, PEDF accelerated proliferation of cells in the spheroids and inhibited apoptosis. As negative effects, PEDF inhibited the normal histotypic tissue formation of retinal aggregates and reduced the frequency of photoreceptor rosettes and IPL-like areas. Noticeably, supplementation of PEDF-treated cultures with GDNF reversed the effects of PEDF on spheroid morphology and on rod differentiation. This study establishes that PEDF strongly affects three-dimensional retinogenesis in vitro, most notably by inhibiting rod development and supporting proliferation and differentiation of cones, effects which are partially counteracted by GDNF

    Role of Dopamine D2 Receptors in Human Reinforcement Learning

    Get PDF
    Influential neurocomputational models emphasize dopamine (DA) as an electrophysiological and neurochemical correlate of reinforcement learning. However, evidence of a specific causal role of DA receptors in learning has been less forthcoming, especially in humans. Here we combine, in a between-subjects design, administration of a high dose of the selective DA D2/3-receptor antagonist sulpiride with genetic analysis of the DA D2 receptor in a behavioral study of reinforcement learning in a sample of 78 healthy male volunteers. In contrast to predictions of prevailing models emphasizing DA's pivotal role in learning via prediction errors, we found that sulpiride did not disrupt learning, but rather induced profound impairments in choice performance. The disruption was selective for stimuli indicating reward, while loss avoidance performance was unaffected. Effects were driven by volunteers with higher serum levels of the drug, and in those with genetically-determined lower density of striatal DA D2 receptors. This is the clearest demonstration to date for a causal modulatory role of the DA D2 receptor in choice performance that might be distinct from learning. Our findings challenge current reward prediction error models of reinforcement learning, and suggest that classical animal models emphasizing a role of postsynaptic DA D2 receptors in motivational aspects of reinforcement learning may apply to humans as well.Neuropsychopharmacology accepted article peview online, 09 April 2014; doi:10.1038/npp.2014.84
    corecore