49 research outputs found

    HLA Relationships to Disease

    No full text

    Qa-1(b)-dependent modulation of dendritic cell and NK cell cross-talk in vivo.

    No full text
    Dendritic cells (DC) trigger activation and IFN-gamma release by NK cells in lymphoid tissues, a process important for the polarization of Th1 responses. Little is known about the molecular signals that regulate DC-induced NK cell IFN-gamma synthesis. In this study, we analyzed whether the interaction between Qa-1(b) expressed on DC and its CD94/NKG2A receptor on NK cells affects this process. Activation of DC using CpG-oligodeoxynucleotides in Qa-1(b)-deficient mice, or transfer of CpG-oligodeoxynucleotide-activated Qa-1(b)-deficient DC into wild-type mice, resulted in dramatically increased IFN-gamma production by NK cells, as compared with that induced by Qa-1(b)-expressing DC. Masking the CD94/NKG2A inhibitory receptor on NK cells in wild-type mice similarly enhanced the IFN-gamma response of these cells to Qa-1(b)-expressing DC. Furthermore, NK cells from CD94/NKG2A-deficient mice displayed higher IFN-gamma production upon DC stimulation. These results demonstrate that Qa-1(b) is critically involved in regulating IFN-gamma synthesis by NK cells in vivo through its interaction with CD94/NKG2A inhibitory receptors. This receptor-ligand interaction may be essential to prevent unabated cytokine production by NK cells during an inflammatory response

    Treatment of 4T1 Metastatic Breast Cancer with Combined Hypofractionated Irradiation and Autologous T-Cell Infusion

    No full text
    The goal of this study was to determine whether a combination of local tumor irradiation and autologous T-cell transplantation can effectively treat metastatic 4T1 breast cancer in mice. BALB/c mice were injected subcutaneously with luciferase-labeled 4T1 breast tumor cells and allowed to grow for 21 days, at which time metastases appeared in the lungs. Primary tumors were treated at that time with 3 daily fractions of 20 Gy of radiation each. Although this approach could eradicate primary tumors, tumors in the lungs grew progressively. We attempted to improve efficacy of the radiation by adding autologous T-cell infusions. Accordingly, T cells were purified from the spleens of tumor-bearing mice after completion of irradiation and cryopreserved. Cyclophosphamide was administered thereafter to induce lympho-depletion, followed by T-cell infusion. Although the addition of cyclophosphamide to irradiation did not improve survival or reduce tumor progression, the combination of radiation, cyclophosphamide and autologous T-cell infusion induced durable remissions and markedly improved survival. We conclude that the combination of radiation and autologous T-cell infusion is an effective treatment for metastatic 4T1 breast cancer. (C) 2014 by Radiation Research Societyopen1188sciescopu

    T(H)1, T(H)2, and T(H)17 cells instruct monocytes to differentiate into specialized dendritic cell subsets.

    No full text
    Monocytes and T helper (T(H)) cells rapidly infiltrate inflamed tissues where monocytes differentiate into inflammatory dendritic cells (DCs) through undefined mechanisms. Our studies indicate that T(H) cells frequently interact with monocytes in inflamed skin and elicit the differentiation of specialized DC subsets characteristic of these lesions. In psoriasis lesions, T(H)1 and T(H)17 cells interact with monocytes and instruct these cells to differentiate into T(H)1- and T(H)17-promoting DCs, respectively. Correspondingly, in acute atopic dermatitis, T(H)2 cells interact with monocytes and elicit the formation of T(H)2-promoting DCs. DC formation requires GM-CSF and cell contact, whereas T(H) subset specific cytokines dictate DC function and the expression of DC subset specific surface molecules. Moreover, the phenotypes of T cell-induced DC subsets are maintained after subsequent stimulation with a panel of TLR agonists, suggesting that T(H)-derived signals outweigh downstream TLR signals in their influence on DC function. These findings indicate that T(H) cells govern the formation and function of specialized DC subsets
    corecore