35 research outputs found

    Relaxing learned constraints through cathodal tDCS on the left dorsolateral prefrontal cortex

    Get PDF
    We solve problems by applying previously learned rules. The dorsolateral prefrontal cortex (DLPFC) plays a pivotal role in automating this process of rule induction. Despite its usual efficiency, this process fails when we encounter new problems in which past experience leads to a mental rut. Learned rules could therefore act as constraints which need to be removed in order to change the problem representation for producing the solution. We investigated the possibility of suppressing the DLPFC by transcranial direct current stimulation (tDCS) to facilitate such representational change. Participants solved matchstick arithmetic problems before and after receiving cathodal, anodal or sham tDCS to the left DLPFC. Participants who received cathodal tDCS were more likely to solve the problems that require the maximal relaxation of previously learned constraints than the participants who received anodal or sham tDCS. We conclude that cathodal tDCS over the left DLPFC might facilitate the relaxation of learned constraints, leading to a successful representational change

    Artificial creativity augmentation

    No full text
    Creativity has been associated with multifarious descriptions whereby one exemplary common definition depicts creativity as the generation of ideas that are perceived as both novel and useful within a certain social context. In the face of adversarial conditions taking the form of global societal challenges from climate change over AI risks to technological unemployment, this paper motivates future research on artificial creativity augmentation (ACA) to indirectly support the generation of requisite defense strategies and solutions. This novel term is of ambiguous nature since it subsumes two research directions: (1) artificially augmenting human creativity, but also (2) augmenting artificial creativity. In this paper, we examine and extend recent creativity research findings from psychology and cognitive neuroscience to identify potential indications on how to work towards (1). Moreover, we briefly analyze how research on (1) could possibly inform progress towards (2). Overall, while human enhancement but also the implementation of powerful AI are often perceived as ethically controversial, future ACA research could even appear socially desirable
    corecore