17 research outputs found

    Pattern Classification of Working Memory Networks Reveals Differential Effects of Methylphenidate, Atomoxetine, and Placebo in Healthy Volunteers

    Get PDF
    Stimulant and non-stimulant drugs can reduce symptoms of attention deficit/hyperactivity disorder (ADHD). The stimulant drug methylphenidate (MPH) and the non-stimulant drug atomoxetine (ATX) are both widely used for ADHD treatment, but their differential effects on human brain function remain unclear. We combined event-related fMRI with multivariate pattern recognition to characterize the effects of MPH and ATX in healthy volunteers performing a rewarded working memory (WM) task. The effects of MPH and ATX on WM were strongly dependent on their behavioral context. During non-rewarded trials, only MPH could be discriminated from placebo (PLC), with MPH producing a similar activation pattern to reward. During rewarded trials both drugs produced the opposite effect to reward, that is, attenuating WM networks and enhancing task-related deactivations (TRDs) in regions consistent with the default mode network (DMN). The drugs could be directly discriminated during the delay component of rewarded trials: MPH produced greater activity in WM networks and ATX produced greater activity in the DMN. Our data provide evidence that: (1) MPH and ATX have prominent effects during rewarded WM in task-activated and -deactivated networks; (2) during the delay component of rewarded trials, MPH and ATX have opposing effects on activated and deactivated networks: MPH enhances TRDs more than ATX, whereas ATX attenuates WM networks more than MPH; and (3) MPH mimics reward during encoding. Thus, interactions between drug effects and motivational state are crucial in defining the effects of MPH and ATX

    Receptor binding studies of soft anticholinergic agents

    No full text
    Receptor binding studies were performed on 24 soft anticholinergic agents and 5 conventional anticholinergic agents using 4 cloned human muscarinic receptor subtypes. The measured pKi values of the soft anticholinergic agents ranged from 6.5 to 9.5, with the majority being in the range of 7.5 to 8.5. Strong correlation was observed between the pKis determined here and the pA2 values measured earlier in guinea pig ileum contraction assays. The corresponding correlation coefficients (r2) were 0.80, 0.73, 0.81, and 0.78 for pKi(m1), pKi(m2), pKi(m3), and pKi(m4), respectively. Quantitative structure-activity relationship (QSAR) studies were also performed, and good characterization could be obtained for the soft anticholinergics containing at least 1 tropine moiety in their structure. For these compounds, the potency as measured by the pKi values was found to be related to geometric, electronic, and lipophilicity descriptors. A linear regression equation using ovality (Oe), dipole moment (D), and a calculated log octanol-water partition coefficient (QLogP) gave reasonably good descriptions (r=0.88) for the pKi(m3) values
    corecore