204 research outputs found
Directed cell migration in the presence of obstacles
BACKGROUND: Chemotactic movement is a common feature of many cells and microscopic organisms. In vivo, chemotactic cells have to follow a chemotactic gradient and simultaneously avoid the numerous obstacles present in their migratory path towards the chemotactic source. It is not clear how cells detect and avoid obstacles, in particular whether they need a specialized biological mechanism to do so. RESULTS: We propose that cells can sense the presence of obstacles and avoid them because obstacles interfere with the chemical field. We build a model to test this hypothesis and find that this naturally enables efficient at-a-distance sensing to be achieved with no need for a specific and active obstacle-sensing mechanism. We find that (i) the efficiency of obstacle avoidance depends strongly on whether the chemotactic chemical reacts or remains unabsorbed at the obstacle surface. In particular, it is found that chemotactic cells generally avoid absorbing barriers much more easily than non-absorbing ones. (ii) The typically low noise in a cell's motion hinders the ability to avoid obstacles. We also derive an expression estimating the typical distance traveled by chemotactic cells in a 3D random distribution of obstacles before capture; this is a measure of the distance over which chemotaxis is viable as a means of directing cells from one point to another in vivo. CONCLUSION: Chemotactic cells, in many cases, can avoid obstacles by simply following the spatially perturbed chemical gradients around obstacles. It is thus unlikely that they have developed specialized mechanisms to cope with environments having low to moderate concentrations of obstacles
Cyclic and Sleep-Like Spontaneous Alternations of Brain State Under Urethane Anaesthesia
Background: Although the induction of behavioural unconsciousness during sleep and general anaesthesia has been shown to involve overlapping brain mechanisms, sleep involves cyclic fluctuations between different brain states known as active (paradoxical or rapid eye movement: REM) and quiet (slow-wave or non-REM: nREM) stages whereas commonly used general anaesthetics induce a unitary slow-wave brain state. Methodology/Principal Findings: Long-duration, multi-site forebrain field recordings were performed in urethaneanaesthetized rats. A spontaneous and rhythmic alternation of brain state between activated and deactivated electroencephalographic (EEG) patterns was observed. Individual states and their transitions resembled the REM/nREM cycle of natural sleep in their EEG components, evolution, and time frame (,11 minute period). Other physiological variables such as muscular tone, respiration rate, and cardiac frequency also covaried with forebrain state in a manner identical to sleep. The brain mechanisms of state alternations under urethane also closely overlapped those of natural sleep in their sensitivity to cholinergic pharmacological agents and dependence upon activity in the basal forebrain nuclei that are the major source of forebrain acetylcholine. Lastly, stimulation of brainstem regions thought to pace state alternations in sleep transiently disrupted state alternations under urethane. Conclusions/Significance: Our results suggest that urethane promotes a condition of behavioural unconsciousness tha
Gram Negative Wound Infection in Hospitalised Adult Burn Patients-Systematic Review and Metanalysis-
BACKGROUND:
Gram negative infection is a major determinant of morbidity and survival. Traditional teaching suggests that burn wound infections in different centres are caused by differing sets of causative organisms. This study established whether Gram-negative burn wound isolates associated to clinical wound infection differ between burn centres.
METHODS:
Studies investigating adult hospitalised patients (2000-2010) were critically appraised and qualified to a levels of evidence hierarchy. The contribution of bacterial pathogen type, and burn centre to the variance in standardised incidence of Gram-negative burn wound infection was analysed using two-way analysis of variance.
PRIMARY FINDINGS:
Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumanni, Enterobacter spp., Proteus spp. and Escherichia coli emerged as the commonest Gram-negative burn wound pathogens. Individual pathogens' incidence did not differ significantly between burn centres (F (4, 20) = 1.1, p = 0.3797; r2 = 9.84).
INTERPRETATION:
Gram-negative infections predominate in burn surgery. This study is the first to establish that burn wound infections do not differ significantly between burn centres. It is the first study to report the pathogens responsible for the majority of Gram-negative infections in these patients. Whilst burn wound infection is not exclusive to these bacteria, it is hoped that reporting the presence of this group of common Gram-negative "target organisms" facilitate clinical practice and target research towards a defined clinical demand.peer-reviewe
Reef-building corals thrive within hot-acidified and deoxygenated waters
Coral reefs are deteriorating under climate change as oceans continue to warm and acidify and thermal anomalies grow in frequency and intensity. In vitro experiments are widely used to forecast reef-building coral health into the future, but often fail to account for the complex ecological and biogeochemical interactions that govern reefs. Consequently, observations from coral communities under naturally occurring extremes have become central for improved predictions of future reef form and function. Here, we present a semi-enclosed lagoon system in New Caledonia characterised by diel fluctuations of hot-deoxygenated water coupled with tidally driven persistently low pH, relative to neighbouring reefs. Coral communities within the lagoon system exhibited high richness (number of species = 20) and cover (24-35% across lagoon sites). Calcification rates for key species (Acropora formosa, Acropora pulchra, Coelastrea aspera and Porites lutea) for populations from the lagoon were equivalent to, or reduced by ca. 30-40% compared to those from the reef. Enhanced coral respiration, alongside high particulate organic content of the lagoon sediment, suggests acclimatisation to this trio of temperature, oxygen and pH changes through heterotrophic plasticity. This semi-enclosed lagoon therefore provides a novel system to understand coral acclimatisation to complex climatic scenarios and may serve as a reservoir of coral populations already resistant to extreme environmental conditions
Diagnosis and treatment trends in mucopolysaccharidosis I: findings from the MPS I Registry
Our objective was to assess how the diagnosis and treatment of mucopolysaccharidosis I (MPS I) have changed over time. We used data from 891 patients in the MPS I Registry, an international observational database, to analyze ages at symptom onset, diagnosis, treatment initiation, and treatment allocation (hematopoietic stem cell transplantation, enzyme replacement therapy with laronidase, both, or neither) over time for all disease phenotypes (Hurler, Hurler–Scheie, and Scheie syndromes). The interval between diagnosis and treatment has become shorter since laronidase became available in 2003 (gap during 2006–2009: Hurler—0.2 year, Hurler–Scheie—0.5 year, Scheie—1.4 years). However, the age at diagnosis has not decreased for any MPS I phenotype over time, and the interval between symptom onset and treatment initiation remains substantial for both Hurler–Scheie and Scheie patients (gap during 2006–2009, 2.42 and 6.71 years, respectively). Among transplanted patients, an increasing proportion received hematopoietic stem cells from cord blood (34 out of 64 patients by 2009) and was also treated with laronidase (42 out of 45 patients by 2009). Conclusions: Despite the availability of laronidase since 2003, the diagnosis of MPS I is still substantially delayed for patients with Hurler–Scheie and Scheie phenotypes, which can lead to a sub-optimal treatment outcome. Increased awareness of MPS I signs and symptoms by primary care providers and pediatric subspecialists is crucial to initiate early treatment and to improve the quality of life of MPS I patients
The dynamic stator stalk of rotary ATPases
Rotary ATPases couple ATP hydrolysis/synthesis with proton translocation across biological membranes and so are central components of the biological energy conversion machinery. Their peripheral stalks are essential components that counteract torque generated by rotation of the central stalk during ATP synthesis or hydrolysis. Here we present a 2.25-Å resolution crystal structure of the peripheral stalk from Thermus thermophilus A-type ATPase/synthase. We identify bending and twisting motions inherent within the structure that accommodate and complement a radial wobbling of the ATPase headgroup as it progresses through its catalytic cycles, while still retaining azimuthal stiffness necessary to counteract rotation of the central stalk. The conformational freedom of the peripheral stalk is dictated by its unusual right-handed coiled-coil architecture, which is in principle conserved across all rotary ATPases. In context of the intact enzyme, the dynamics of the peripheral stalks provides a potential mechanism for cooperativity between distant parts of rotary ATPases
Breast cancer-specific mutations in CK1ε inhibit Wnt/β-catenin and activate the Wnt/Rac1/JNK and NFAT pathways to decrease cell adhesion and promote cell migration
Introduction Breast cancer is one of the most common types of cancer in women. One of the genes that were found mutated in breast cancer is casein kinase 1 epsilon (CK1ε). Because CK1ε is a crucial regulator of the Wnt signaling cascades, we determined how these CK1ε mutations interfere with the Wnt pathway and affect the behavior of epithelial breast cancer cell lines. Methods We performed in silico modeling of various mutations and analyzed the kinase activity of the CK1ε mutants both in vitro and in vivo. Furthermore, we used reporter and small GTPase assays to identify how mutation of CK1ε affects different branches of the Wnt signaling pathway. Based on these results, we employed cell adhesion and cell migration assays in MCF7 cells to demonstrate a crucial role for CK1ε in these processes. Results In silico modeling and in vivo data showed that autophosphorylation at Thr 44, a site adjacent to the breast cancer point mutations in the N-terminal lobe of human CK1ε, is involved in positive regulation of the CK1ε activity. Our data further demonstrate that, in mammalian cells, mutated forms of CK1ε failed to affect the intracellular localization and phosphorylation of Dvl2; we were able to demonstrate that CK1ε mutants were unable to enhance Dvl-induced TCF/LEF-mediated transcription, that CK1ε mutants acted as loss-of-function in the Wnt/β-catenin pathway, and that CK1ε mutants activated the noncanonical Wnt/Rac-1 and NFAT pathways, similar to pharmacological inhibitors of CK1. In line with these findings, inhibition of CK1 promoted cell migration as well as decreased cell adhesion and E-cadherin expression in the breast cancer-derived cell line MCF7. Conclusions In summary, these data suggest that the mutations of CK1ε found in breast cancer can suppress Wnt/β-catenin as well as promote the Wnt/Rac-1/JNK and Wnt/NFAT pathways, thus contributing to breast cancer development via effects on cell adhesion and migration. In terms of molecular mechanism, our data indicate that the breast cancer point mutations in the N-terminal lobe of CK1ε, which are correlated with decreased phosphorylation activities of mutated forms of CK1ε both in vitro and in vivo, interfere with positive autophosphorylation at Thr 4
Metabolic Engineering of Cofactor F420 Production in Mycobacterium smegmatis
Cofactor F420 is a unique electron carrier in a number of microorganisms including Archaea and Mycobacteria. It has been shown that F420 has a direct and important role in archaeal energy metabolism whereas the role of F420 in mycobacterial metabolism has only begun to be uncovered in the last few years. It has been suggested that cofactor F420 has a role in the pathogenesis of M. tuberculosis, the causative agent of tuberculosis. In the absence of a commercial source for F420, M. smegmatis has previously been used to provide this cofactor for studies of the F420-dependent proteins from mycobacterial species. Three proteins have been shown to be involved in the F420 biosynthesis in Mycobacteria and three other proteins have been demonstrated to be involved in F420 metabolism. Here we report the over-expression of all of these proteins in M. smegmatis and testing of their importance for F420 production. The results indicate that co–expression of the F420 biosynthetic proteins can give rise to a much higher F420 production level. This was achieved by designing and preparing a new T7 promoter–based co-expression shuttle vector. A combination of co–expression of the F420 biosynthetic proteins and fine-tuning of the culture media has enabled us to achieve F420 production levels of up to 10 times higher compared with the wild type M. smegmatis strain. The high levels of the F420 produced in this study provide a suitable source of this cofactor for studies of F420-dependent proteins from other microorganisms and for possible biotechnological applications
Prevalence of high-risk HPV genotypes, categorised by their quadrivalent and nine-valent HPV vaccination coverage, and the genotype association with high-grade lesions
BACKGROUND:
The new nine-valent vaccine against human papillomavirus (HPV) includes the four HPV genotypes (6, 11, 16, and 18) that are targeted by the older quadrivalent HPV vaccine, plus five additional oncogenic types (31, 33, 45, 52, and 58) remain significantly associated with high grade lesions. We aimed to determine the prevalence of high-risk HPV genotypes in unvaccinated subjects and the association of these genotypes with the incidence of high-grade lesions. We also assessed which, if either, of these two HPV vaccines could have prevented these cases.
METHODS:
This cross-sectional study, conducted from 4 January 2010 to 30 December 2011, was composed of 595 women attending the Hospital General Universitario de Elche (Spain) gynaecology department who were positively screened for opportunistic cervical cancer by pap smears and HPV detection during a routine gynaecological health check. The pap smear results were classified using the Bethesda system. HPV genotyping was performed with the Linear Array HPV genotyping test, and viruses were classified by the International Agency for Research on Cancer assessment of HPV carcinogenicity. Odds ratios (ORs) with their 95% confidence intervals (95% CI) were estimated by logistic regression, adjusting for age and immigrant status. The prevented fraction among those exposed (PFe-adjusted) was determined as a measure of impact.
RESULTS:
At least one of the additional five high-risk HPV genotypes present in the nine-valent HPV vaccine was detected in 20.5% of subjects. After excluding women with genotype 16 and/or 18 co-infection, high-risk genotypes (31, 33, 45, 52, and 58) were associated with a higher risk of intraepithelial lesion or malignancy: adjusted OR?=?3.51 (95% CI, 1.29-9.56), PFe-adjusted?=?0.72 (95% CI, 0.22-0.90). Genotypes that are still non-vaccine-targeted were detected in 17.98% of the women, but these were not significantly associated with high-grade lesions.
CONCLUSION:
The greater protection of the nine-valent HPV vaccine is likely to have a positive impact because, in the absence of genotype 16 or 18 infection, these five genotypes on their own remained significantly associated with high-grade lesions
- …