31 research outputs found

    Pre-mRNA Splicing Modulation by Antisense Oligonucleotides

    Get PDF
    Pre-mRNA splicing, a dynamic process of intron removal and exon joining, is governed by a combinatorial control exerted by overlapping cis-elements that are unique to each exon and its flanking intronic sequences. Splicing cis-elements are usually 4-to-8-nucleotide-long linear motifs that provide binding sites for specific proteins. Pre-mRNA splicing is also influenced by secondary and higher order RNA structures that affect accessibility of splicing cis-elements. Antisense oligonucleotides (ASOs) that block splicing cis-elements and/or affect RNA structure have been shown to modulate splicing in vivo. Therefore, ASO-based strategies have emerged as a powerful tool for therapeutic manipulation of splicing in pathological conditions. Here we describe an ASO-based approach to increase the production of the full-length SMN2 mRNA in spinal muscular atrophy patient cells

    Coral microbiome composition along the northern Red Sea suggests high plasticity of bacterial and specificity of endosymbiotic dinoflagellate communities

    Get PDF
    Background The capacity of reef-building corals to tolerate (or adapt to) heat stress is a key factor determining their resilience to future climate change. Changes in coral microbiome composition (particularly for microalgal endosymbionts and bacteria) is a potential mechanism that may assist corals to thrive in warm waters. The northern Red Sea experiences extreme temperatures anomalies, yet corals in this area rarely bleach suggesting possible refugia to climate change. However, the coral microbiome composition, and how it relates to the capacity to thrive in warm waters in this region, is entirely unknown. Results We investigated microbiomes for six coral species (Porites nodifera, Favia favus, Pocillopora damicornis, Seriatopora hystrix, Xenia umbellata, and Sarcophyton trocheliophorum) from five sites in the northern Red Sea spanning 4° of latitude and summer mean temperature ranges from 26.6 °C to 29.3 °C. A total of 19 distinct dinoflagellate endosymbionts were identified as belonging to three genera in the family Symbiodiniaceae (Symbiodinium, Cladocopium, and Durusdinium). Of these, 86% belonged to the genus Cladocopium, with notably five novel types (19%). The endosymbiont community showed a high degree of host-specificity despite the latitudinal gradient. In contrast, the diversity and composition of bacterial communities of the surface mucus layer (SML)—a compartment particularly sensitive to environmental change—varied significantly between sites, however for any given coral was species-specific. Conclusion The conserved endosymbiotic community suggests high physiological plasticity to support holobiont productivity across the different latitudinal regimes. Further, the presence of five novel algal endosymbionts suggests selection of certain genotypes (or genetic adaptation) within the semi-isolated Red Sea. In contrast, the dynamic composition of bacteria associated with the SML across sites may contribute to holobiont function and broaden the ecological niche. In doing so, SML bacterial communities may aid holobiont local acclimatization (or adaptation) by readily responding to changes in the host environment. Our study provides novel insight about the selective and endemic nature of coral microbiomes along the northern Red Sea refugia

    Medicinal and ethnoveterinary remedies of hunters in Trinidad

    Get PDF
    BACKGROUND: Ethnomedicines are used by hunters for themselves and their hunting dogs in Trinidad. Plants are used for snakebites, scorpion stings, for injuries and mange of dogs and to facilitate hunting success. RESULTS: Plants used include Piper hispidum, Pithecelobium unguis-cati, Bauhinia excisa, Bauhinia cumanensis, Cecropia peltata, Aframomum melegueta, Aristolochia rugosa, Aristolochia trilobata, Jatropha curcas, Jatropha gossypifolia, Nicotiana tabacum, Vernonia scorpioides, Petiveria alliacea, Renealmia alpinia, Justicia secunda, Phyllanthus urinaria,Phyllanthus niruri,Momordica charantia, Xiphidium caeruleum, Ottonia ovata, Lepianthes peltata, Capsicum frutescens, Costus scaber, Dendropanax arboreus, Siparuma guianensis, Syngonium podophyllum, Monstera dubia, Solanum species, Eclipta prostrata, Spiranthes acaulis, Croton gossypifolius, Barleria lupulina, Cola nitida, Acrocomia ierensis (tentative ID). CONCLUSION: Plant use is based on odour, and plant morphological characteristics and is embedded in a complex cultural context based on indigenous Amerindian beliefs. It is suggested that the medicinal plants exerted a physiological action on the hunter or his dog. Some of the plants mentioned contain chemicals that may explain the ethnomedicinal and ethnoveterinary use. For instance some of the plants influence the immune system or are effective against internal and external parasites. Plant baths may contribute to the health and well being of the hunting dogs

    Estimating the prevalence of functional exonic splice regulatory information

    Get PDF

    Elemental concentrations in skin and internal tissues of Commerson’s dolphins (Cephalorhynchus commersonii) from subantarctic waters

    No full text
    The skin of cetaceans is the most accessibletissue, and its sampling has been proposed as a noninvasivemethod to evaluate trace element concentrations in free-rangingpopulations. In the present work, concentrations ofessential (Cl, Na, K, Mg, Fe, Zn, Mn and Co), nonessential(As and Ag), and of unknown essentiality (Br, Rb and Cs)elements were determined in the skin from nine by-caughtCommerson´s dolphins (Cephalorhynchus commersonii)from Tierra del Fuego, Argentina. Skin correlations withinternal tissues (lung, liver, kidney and muscle) wereassessed to evaluate how the skin represents internal elementconcentration for monitoring purposes. Elementalcontents were analyzed by instrumental neutron activationanalysis (INAA). Regarding tissue distribution, skin hadthe highest concentration of Zn being two orders of magnitudehigher than internal tissues, while other elementssuch as Co and Rb had similar concentrations among tissues.High mean concentrations of Cl, Na, Mg, Br and Mnwere observed in the lung and liver. Our results support theuse of skin to evaluate Fe, Br and Rb concentrations ininternal tissues for biomonitoring purposes; however, otherelements did not show significant skin-to-tissue correlations.Overall, toxic element levels were far below concentrationsfound to cause harm in marine vertebrates. Thisstudy provided baseline data on elemental concentrationsin tissues of Commerson´s dolphins in subantarctic watersfrom the South Atlantic Ocean.Fil: Cáceres Saez, Iris. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; Argentina. Museo Acatushún de Aves y Mamíferos Marinos Australes; ArgentinaFil: Ribeiro Guevara, Sergio. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Unidad de Actividad de Ingeniería Nuclear. Laboratorio de Análisis por Activación Neutróica; ArgentinaFil: Prosser Goodall, Rae Natalie. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentina. Museo Acatushún de Aves y Mamíferos Marinos Australes; ArgentinaFil: Dellabianca, Natalia Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentina. Museo Acatushún de Aves y Mamíferos Marinos Australes; ArgentinaFil: Cappozzo, Humberto Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; Argentina. Fundación de Historia Natural Félix de Azara; Argentina. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico; Argentin
    corecore